Mineral nutrients are essential for normal growth and development of plants. The phenomenal growth of knowledge made in the areas of the mechanism of the ion uptake, the critical role of minerals in the basic processes at cellular level and molecular approaches to the study of mineral nutrition have raised the status of mineral nutrition of plants as an independent discipline of the plant biology (Epstein, 1972; Mengel and Kirkby, 1978; Clarkson and Hanson, 1980; Marschner, 1995; Loneragan, 1997; Grossman and Takahashi, 2001).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwala, S.C., Chatterjee, C., Sharma, P.N., Sharma, C.P. and Nautiyal, N. (1979). Pollen development in maize plants subjected to molybdenum deficiency. Can. J. Bot. 57, 1946–1950.Google Scholar
  2. Agarwala, S.C., Sharma, C.P., Chatterjee, C., Sharma P.N., Bisht, S.S. and Nautiyal, N. (1969). Annual Progress Report of I.C.A.R. Coordinated scheme on Micronutrients of soils for the year 1968–69. Lucknow University of Lucknow (U.P) INDIA.Google Scholar
  3. Agarwala, S.C., Sharma, P.N., Chatterjee, C. and Sharma, C.P. (1981). Development and enzymatic changes during pollen development in boron deficient maize plants. J. Plant. Nutr. 3, 329–336.Google Scholar
  4. Ali, A.H.N. and Jarvis, B.C. (1988). Effects of auxin and boron on nucleic acid metabolism and cell division during adventitious root regeneration. New Phytol. 108, 383–391.Google Scholar
  5. Armstrong, M.J and Kirkby, E.A. (1979b). The influence of humidity on the mineral composition of tomato plants with special reference to calcium distribution. Plant Soil. 52, 427–435.CrossRefGoogle Scholar
  6. Asher, C.J. (1991). Beneficial elements, functional nutrients and possible new essential elements. In: “Micronutrients in agriculture, 2nd edition (J.J. Mortvedt, F.R. Cox, L.M. Shuman and R.M Welch, eds.) pp 703–723. Soil. Sci. Soc. Amer. Book series, No.4, Madison, WI, USA.Google Scholar
  7. Ayala, M.B. and Sandmann, G. (1988a). Activities of Cu-containing proteins in Cu-depleted pea leaves. Physiol. Plant. 72, 801–806.Google Scholar
  8. Baker, A.J.M. (1987). Metal tolerance. New Phytol. 106, 93–111.Google Scholar
  9. Barry, D.A.J and Miller, M.H. (1989). Phosphorus nutritional requirement of maize seedlings for maximum yield. Agron. J. 81, 95-99CrossRefGoogle Scholar
  10. Baszynski, T., Warcholowa, M., Krupa, Z, Tukendorf, A., Krol, M and Wolinska, D. (1980). Effect of magnesium deficiency on photochemical activites of rape and buck wheat chloroplasts. Z. Pflanzenphysiol. 99, 295–303.Google Scholar
  11. Bereczky, Z., Wang, H-Y., Schubert, V., Ganal, M and Bauer, P. (2003). Differential reglation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J. Biol. Chem. 278, 24697–24704.PubMedCrossRefGoogle Scholar
  12. Bergmann, W. (1988). ‘Ernahrungsstorungen bei kulturpflanzen. Entstehung, visuelle und analytische Diagnose’. Fischer Verlag, Jena.Google Scholar
  13. Bernard, R.L and Howell, R.W. (1964). Inheritance of phosphorus sensitivity in soybeans. Crop Sci. 4, 298–299.Google Scholar
  14. Brancardo, D., Rabotti, G., Scienza, A. and Zocchi, G. (1995). Mechanism of Fe-efficiency in roots of vitis spp. in response to iron deficiency stress. Plant and Soil. 171, 229–234.Google Scholar
  15. Breckle, S.-W. (1991). Growth under stress. Heavy metals. In: “The plant root, the Hidden Half (Y. Waisel, A. Eshel and U. Kafkafi, eds.), pp. 351–373. Marcel Dekker, New York.Google Scholar
  16. Brown, J.C., Jolley, V.D. and Lytle, C.M. (1991). Comparative evaluation of iron solubilizing substances (phytosiderophores) released by oats and corn: Iron-efficient and iron-inefficient plants. Plant Soil. 130, 157–163.CrossRefGoogle Scholar
  17. Brown, J.C and Jones, W.E. (1975). Heavy metal toxicity in plants. I. A crises in embryo. Commun. Soil Sci. Plant Anal. 6, 421–438.Google Scholar
  18. Brown, P.H., Welch, R.M and Madison, J.T. (1990). Effect of nickel deficiency on soluble anion, amino acid and nitrogen levels in barley. Plant Soil 125, 19–27.Google Scholar
  19. Brown, P.H., Welch, R.M. and Cary, E.E. (1987). Nickel : a micronutrient essential for higher plants. Plant Physiol. 85, 801–803.PubMedGoogle Scholar
  20. Burnell, J.N and Hatch, M.D. (1988). Low bundle sheath carbonic anhydrase is apparent by essential for effective C4 pathway operation. Plant Physiol. 86, 1252–1256.PubMedGoogle Scholar
  21. Bush, D.S., Cornejo, M.-J. Huang, C.-N. and Jones, R.L. (1986). Ca2+stimulated secretion of a-amylase during development in barley aleurone protoplasts. Plant Physiol. 82, 566–574.PubMedGoogle Scholar
  22. Cakmak, I and Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 98, 1222–1227.PubMedGoogle Scholar
  23. Cakmak, I., Marschner, H and Bangerth, F. (1989). Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3 acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J. Exp. Bot. 40, 404–412.Google Scholar
  24. Cammack, R., Fernandez, V.M and Schneider, K. (1988). Nickel in hydrogenases from sulphate-reducing, photosynthetic, and hydrogen oxidizing bacteria. In: “The Bioorganic Chemistry of Nickel” (J.R. Lancaster jr, ed.) pp 167–190. Verlag-Chemie, WeinheimGoogle Scholar
  25. Cammerano, P., Felsani, A., Gentile, M., Gualerzi, C., Romeo, C and Wolf, G. (1972). Formation of active hybrid 80s particles from sub units of pea seedlings and mammalian liver ribosomes. Biochim. Biophys. Acta. 281, 625–642.Google Scholar
  26. Chatterjee, C., Nautiyal, N. and Agarwala, S.C. (1985). Metabolic changes in mustard plant associated with molybdenum deficiency. New Phytol. 100, 511–518.Google Scholar
  27. Churchill, K.A and Sze, H. (1984). Anion-sensitive, H+-pumping ATPase of oat roots. Direct effects of Cl-, NO3 - and a disulfonic stibene. Plant Physiol. 76, 490–497.PubMedGoogle Scholar
  28. Cladwell, C.R and Haug, A. (1981). Temperature dependence of the barley root plasma membrane bound Ca2+and Mg2+- dependent ATPase. Physiol Plant. 53, 117–124.Google Scholar
  29. Clarkson, D.T. and Hanson, J.B. (1980). The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31, 239–298.CrossRefGoogle Scholar
  30. Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212, 475–486.PubMedCrossRefGoogle Scholar
  31. Cobbett, C.S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825–832.PubMedCrossRefGoogle Scholar
  32. Cobbett, C.S. and Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Ann. Rev. Plant Biol. 53, 159–182.Google Scholar
  33. Coleman, J.E. (1992). Zinc proteins: enzymes, storage proteins, transcription factors and replication proteins. Ann. Rev. Biochem. 61, 897-946PubMedGoogle Scholar
  34. Coleman, W.J., Govindjee. and Gutowsky, H.S. (1987). The location of the chloride binding sites in the oxygen-evolving complex of spinach photosystem II. Biochem. Biophys. Acta 894, 453–459.Google Scholar
  35. Critchley, C. (1985). The role of chloride in photosystem II. Biochem. Biophys. Acta 811, 33–46.Google Scholar
  36. Cumming, J.R. and Taylor, G.J. (1990). Mechanism of metal tolerance in plants: Physiological adaptations for exclusion of metal ions from the cytoplasm. In: “Stress responses in plants”: Adaptations and Aclimatation Mechanisms. (Eds.) R.G. Alscher and J.R Cumming. Wiley-Liss Inc. New York, pp. 329–356.Google Scholar
  37. Dave, I. C. and Kannan, S. (1980). Boron deficiency and its associated enhancement of RNase activity in bean plants. Z. Pflanzenphysiol. 97, 261–264.Google Scholar
  38. Davies, J.N., Adams, P. and Winsor, G.W. (1978). Bud development and flowering of Chrysanthemum morifolium in relation to some enzyme activities and to the copper, iron and manganese status. Commun. Soil Sci. Plant Anal. 9, 249–264.Google Scholar
  39. Delhaize, E., Kataoka, T., Hebb, D.M., White, R.G. and Ryan, P.R. (2003). Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Physiol. 103, 695–702.Google Scholar
  40. Delhaize, E., Loneragan, J. F. and Webb, J. (1985). Development of three copper metalloenzymes in clover leaves. Plant Physiol. 78, 4–7.PubMedGoogle Scholar
  41. Dixon, N.E., Gazola, C., Blakeley, R.L. and Zerner, B. (1975). Jack bean urease (EC., a metalloenzyme. A simple biological role for nickel? J. Am. Chem. Soc. 97, 4131–4133.PubMedGoogle Scholar
  42. Dugger, W.M. (1983). Boron in plant metabolism. In: “Encyclopedia of plant physiology, new series” (A. Lauchli and R.L. Bieleski, eds.) Vol. 15B, pp 626–650, Springer-Verlag, BerlinGoogle Scholar
  43. Edelbauer, A. (1980). Auswirkung von abgestuftem Schwefelmangel auf Wachstum, Substanzbildung und Mineralstoffgehalt von Tomate (Lycopersicon esculentum Mill.) In: Nahrlosungskultur. Die Bodenkultur, 31, 229–241.Google Scholar
  44. Edwards, D.G. and Asher, C.J. (1982). Tolerance of crop and pasture species to manganese toxicity. In “Proceedings of the Ninth plant Nutrition Colloquim, Warwick, England” (A. Scaife, ed). pp. 145–150. Commonwealth Agricultural Bureau, Farnham Royal, Bucks, UK.Google Scholar
  45. Elstner, E.F. (1982). Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol. 33, 73–96.CrossRefGoogle Scholar
  46. Epstein, E. (1965). Mineral metabolism. In: “Plant Biochemistry” (J. Bonner and J. E. Varner, eds.), pp 438–466. Academic Press, London.Google Scholar
  47. Epstein, H. (1972). Mineral Nutrition of Plants: Principles and Perspectives. Wiley, New York.Google Scholar
  48. Ernst, W.H.O. (1976). Physiological and biochemical aspects of metal tolerance. In: “Effects of air pollution on plants” (eds.) T.A. Mansfield, Cambridge University, Press, Cambridge, pp. 115–133.Google Scholar
  49. Eskew, D.L., Welch, R.M. and Norwell, W.A. (1984). Nickel in higher plants. Further evidence for an essential role. Plant Physiol. 76, 691–693.PubMedGoogle Scholar
  50. Evans, D.E., Briars, S.-A. and Williams, L.E. (1991). Active calcium transport by plant cell membranes. J. Exp. Bot. 42, 285–303.Google Scholar
  51. Flowers, T.J., Flowers, A and Greenway, H. 1986. Effects of sodium chloride on tobacco plants. Plant cell Environ. 9, 645–651.Google Scholar
  52. Flowers, T. J. (1988). Chloride as a nutrient and as an osmoticum. In ‘Advances in plant nutrition’ Vol. 3 (B. Tinker and A. Lauchli, eds.), pp. 55–78. Praeger. New York.Google Scholar
  53. Forde, B.G. (2000). Nitrate transporters in plants: structure, function and regulation. Biochim. Biophys. Acta. 1465, 219–235.PubMedGoogle Scholar
  54. Fox, T.C. and Guerinot, M.L. (1998). Molecular biology of cation transport in plants. Ann. Rev. Plant Physiol. 29, 511–566.Google Scholar
  55. Foy, C.D. (1974). Effect of aluminium on plant growth. In: “The plant root and its environment” (E.W. Carson, ed.) pp 601–642, University press of Virginia, Charlottesville.Google Scholar
  56. Foy, C.D., Chaney, R.L. and White, M.C. (1978). The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29, 511–566.Google Scholar
  57. Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-ares J 2004. The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285–293.PubMedCrossRefGoogle Scholar
  58. Fredeen, A.L., Rao, I.M. and Terry, N. (1989). Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol. 89, 225–230.PubMedGoogle Scholar
  59. Grill, E., Winnacker, E.L. and Zenk, M.H. (1985). Phytochelations: The principal heavy metal complexing peptides of higher plants. Science. 230, 674–676.PubMedGoogle Scholar
  60. Grossman, A and Takahashi, H. (2001). Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 163-210. Google Scholar
  61. Hammond, J.P., Bennett, M.J., Bowen, H.C., Broadley, M.R., East wood, D.C., May, S.T., Rahn, C., Swarup, R., Woolaway, K.E. and White, P.J. (2003).Changes in gene expression in Arobidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiology. 132, 578–596.PubMedCrossRefGoogle Scholar
  62. Harmon, A.C., Gribskov, M., Gubrium, E and Harper, J.F. (2001). The CDPK super family of protein kinases. New Phytol. 151, 175–183.CrossRefGoogle Scholar
  63. Helal, H.M. and Mengel, K. (1979). Nitrogen metabolism of young barley plants as affected by NaCl salinity and potassium. Plant soil. 51, 457–462.CrossRefGoogle Scholar
  64. Hodge, A. (2004). The plastic plant: root responses to heterogenous supplies of nutrients. New Phytol. 162, 9–24.CrossRefGoogle Scholar
  65. Hopkins, W.G. and Hüner, N.P.A. (2004). Introduction to plant physiology. Third edition. p.246, John Wiley & Sons Inc.Google Scholar
  66. Horak, O. (1985a). Zur Bedeutung des Nickels fur Fabaceae. I. Vergleichende Untersuchungen uber den Gehalt vegetativer Teile und Samen an Nickel und anderen Elementen. Phyton(Austria). 25, 135–146.Google Scholar
  67. Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F. and Cobbett, C.S. (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell. 16, 1327–1339.PubMedCrossRefGoogle Scholar
  68. Karmoker, J.L., Clarkson, D.L., Saker, L.R., Rooney, J.M. and Purves, J.V. (1991). Sulphate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta 185, 269–278.CrossRefGoogle Scholar
  69. Kuiper, D., Schuit, J. and Kuiper, P.J.C. (1990). Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals. Plant Soil 123, 243–250.CrossRefGoogle Scholar
  70. Krueger, R.W., Lovatt, C.J and Albert, L.S. (1987). Metabolic requirement of cucurbita pepo for boron. Plant Physiol. 83, 254–258.PubMedGoogle Scholar
  71. Lauer, M.J., Blevins, D.G and Sierzputowska-Gracz, H. (1989). 31P-nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max L.) as effected by phosphate nutrition. Plant Physiol. 89, 1331–1336.PubMedGoogle Scholar
  72. Lee, J., Hyunju Bae., Jeeyon Jeong., Jae-Yun Lee, Young-Yell Yang., Inhwan Hwang, Enrico Martinoia. and Youngsook Lee. 2003. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol. 133, 589–596.PubMedGoogle Scholar
  73. Legge, R.L., Thompson, E., Baker, J.E. and Lieberman, M. (1982). The effect of calcium on the flidity and phase properties of microsomal membranes isolated from post climacteric Golden Delicious apples. Plant Cell Physiol. 23, 161–169.Google Scholar
  74. Leon Kochian, V., Owen Hoekenga, A. and Miguel Pineros, A. (2004). How do crop plants tolerate acid soils? Mechanisms of Aluminium tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 55, 459–493.PubMedGoogle Scholar
  75. Leustek, T and Saito, K. 1999. Sulfate transport and assimilation in plants. Plant Physiol. 120, 637–643.PubMedCrossRefGoogle Scholar
  76. Lin, D.C. and Nobel, P.S. (1971). Control of photosynthesis by Mg2+. Arch. Biochem. Biophys. 145, 622–632.PubMedGoogle Scholar
  77. Lindhauer, M.G. (1985). Influence of K nutrition and drought on water relation and growth of sunflower (Helianthus annuus L. ). Z. Pflanzenernahr. Bodenk. 148, 654–669.Google Scholar
  78. Loneragan, J.F and Snowball, K. (1969). Calcium requirements of plants. Aust. J. Agric. Res. 20, 465–478.Google Scholar
  79. Loneragan, J.F. (1997). Plant nutrition in the 20thand perspectives in for the 21stcentury. Plant Soil. 196, 163–174.CrossRefGoogle Scholar
  80. Loomis, W.D. and Durst, R.W. (1991). Boron and cell walls. Curr. Top. In Plant Biochem. Physiol. 10, 149–178.Google Scholar
  81. Lynch, J., Lauchli, A. and Epstein, E. (1991). Vegetative growth of the common bean in response to phosphorus nutrition. Crop Sci. 31, 380–387.CrossRefGoogle Scholar
  82. Lynch, J. and Brown, K.M. (2001).Topsoil foraging- an architectural adaptation of plants to low phosphorus availability. Plant Soil. 237, 225–237.CrossRefGoogle Scholar
  83. Marcar, N.E. and Graham, R.D. (1987). Genotypic variation for manganese efficiency in wheat. J. Plant Nutr. 10, 2049–2055.Google Scholar
  84. Marghoshas, M. and Vallere, B.L. (1957). A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79, 4813–4814.Google Scholar
  85. Marschner, H. (1995). Mineral Nutrition of higher plants. Second edition. Academic Press, London.Google Scholar
  86. Mengel, K. and Kirkby, E.A. (1978). Principles of plant nutrition. Bern. Int. Potash Inst. pp. 593.Google Scholar
  87. Ni, J.J., Wu, P., Len, A.C., Zhans, Y.S. and Tao, Q.W. (1996). Low phosphorus effects in the metabolism of rice seedlings. Commun-Soil-Sci-Plant-anal. Montecello, N.Y, Marcell Dekker Inc. V. 27 (18/20) pp. 3073–3084.Google Scholar
  88. Obata, H. and Umebayashi, M. (1988). Effect of zinc deficiency on protein synthesis in cultures tobacco plant cells. Soil Sci. Plant Nutr. (Tokyo). 34, 351–357.Google Scholar
  89. Ohki, K., Wilson, D.O. and Anderson, O.E. (1981). Manganese deficiency and toxicity sensitivities of soybean cultivar. Agron. J. 72, 713–716.Google Scholar
  90. Pushnik, J.C and Miller, G.W. (1989). Iron regulation of chloroplast photosynthetic function: Mediation of PSI development. J. Plant Nutr. 12, 407–421.Google Scholar
  91. Raghothama, K.G. (1999). Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693.PubMedCrossRefGoogle Scholar
  92. Rauser, W.E. (1990). Phytochelatins. Ann. Rev. Biochem. 59, 61–86.PubMedGoogle Scholar
  93. Ravindranath, N.N.V.S., Satyanarayana, N.V., Prasad, P. and Madhava Rao, K.V. (1985). Foliar application of potassium on the growth and theyield components of Pigeon pea (Cajanus cajan L. Mill.). Proc. Indian Acad. Sci (Plant Sci.) 94, 671–676.Google Scholar
  94. Raschke, K., Hedrich, R., Beckmann, U. and Schroeder, J.L. (1988). Exploring biophysical and biochemical components of the osmotic motor that drives stomatal movement. Bot. Acta. 101, 283–294.Google Scholar
  95. Rebafka, F.P., Ndunguru, B.J. and Marschner, H. (1993). Single superphosphate depresess molybdenum uptake and limits yield response to phosphorus in groundnut (Arachis hypogea L.) grown on an acid sandy soil in Niger, West Africa. Fert. Res. 34, 233–242.CrossRefGoogle Scholar
  96. Reddy, V.S., Ali, G.S. and Reddy, A.S.N. (2002). Genes encoding calmodulin binding proteins in Arabidopsis genome. J. Biol. Chem. 277, 9840–9852.PubMedGoogle Scholar
  97. Reddy, K.J. and Rao, K.V.N. (1979). Effect of zinc on growth and metabolism in two varieties of Cicer arietinum L. Ind. J. Plant Physiol. 22 (2), 254–261.Google Scholar
  98. Roberts, D. M and Harmon, A. C. 1992. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 375–414.CrossRefGoogle Scholar
  99. Robertson, G.A and Loughman, B.C. (1974). Reversible effects of boron on the absorption and incorporation of phosphate in Vicia faba L. New Phytol. 73, 291–298.Google Scholar
  100. Robson, A.D. and Pitman, M.G. (1983). Interactions between nutrients in higher plants. In “Encyclopedia of Plant Physiology New series (A. Lauchli and R. L. Bieleski, eds) vol. 15A, pp 147–180. Springer-Verlag, Berlin and New York.Google Scholar
  101. Ruano, A., Poschenrieder, Ch. and Barcelo, J. (1988). Growth and biomasss partitioning in zinc toxic bush beans. J. Plant Nutr. 11, 577–588.Google Scholar
  102. Ryan, P.R., Delhaize, E. and Jones, D.L. (2001). Function and mechanism of organic anion exudation from plant roots. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 527–560.CrossRefGoogle Scholar
  103. Sandmann, G. and Boger, P. (1983). The enzymatological function of heavy metals and their role in electron transfer processes of plants. In: Inorganic Plant Nutrition, Encycl, Plant Physiol. New Series, Vol. 15B (A. Lauchli and R. L. Bieleski, Eds.) p. 563–596: Springer Verlag, Berlin.Google Scholar
  104. Saito, K. (2000). Regulation of sulfate transport and synthesis of sulfur containing amino acids. Curr. Opin. Plant. Biol. 3, 188–195.PubMedGoogle Scholar
  105. Sasaki, T., Yamamoto, Y., Ezaki, E., Katsuhara, M., Ju AS, et al. (2004). A wheat gene encoding an aluminium activated malate transporter. Plant J. 37, 645–653.PubMedCrossRefGoogle Scholar
  106. Scheible, W.R., Lauerer, M., Schulze, E.D., Caboche, M and Stitt, M. (1997). Accumulation of nitrate in the shoot acts as a signal to regulate shoot - root allocation in tobacco. Plant J. 11, 671–691.CrossRefGoogle Scholar
  107. Sharma, C.P., Sharma, P.N., Bisht, S.S. and Nautiyal, B.D. (1982). Zinc deficiency induced changes in cabbage. In ‘Proceedings of the Ninth Plant Nutrition Colloquium, Warwick, England’ (A. Scaife, ed.)Google Scholar
  108. Sharma, S. and Sanwal, G.G. (1992). Effect of Fe deficiency on the photosynthetic system of maize. J. Plant Physiol. 140, 527–530Google Scholar
  109. Sivaguru, M., Ezaki, B., He, Z.H., Tong, H., Osawa, H. et al., (2003). Aluminium induced gene expression and protein localization of a cell wall associated receptor kinase in Arabidopsis. Plant Physiol. 132, 2256–2266.PubMedCrossRefGoogle Scholar
  110. Snedden, W.A. and Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 151, 35–66.CrossRefGoogle Scholar
  111. Takahashi, H., Watanabe-Takahashi, A., Smith, F.W., Blake-Kalff, M., hawkesford, M.J and Saito, K. (2000). The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J. 23, 171–182.PubMedCrossRefGoogle Scholar
  112. Talbott, L.D. and Zeiger, E. (1998). The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49, 329–337.CrossRefGoogle Scholar
  113. Tanada, T. (1978). Boron-key elements in the actions of phytochrome and gravity. Planta. 143, 109–111.CrossRefGoogle Scholar
  114. Taylor, G.J. (1988). The physiology of aluminuim tolerance. In: “Metal ions in biological systems” Vol 24: Aluminium and its role in biology (ed.) H. Siege, Marcel Dekker, New York, pp. 165–198.Google Scholar
  115. Terry, N. (1977). Photosynthesis, growth and the role of chloride. Plant Physiol. 60, 69–75.PubMedGoogle Scholar
  116. Tewari, R.K.. (2004). Role of mineral nutrient elements in Mulberry(Morus alba L.) Plants with particular reference to oxidative metabolism. Ph.D thesis, University of Lucknow, INDIA.Google Scholar
  117. Thellier, M., Duval, Y. and Demarty, M. (1979). Borate exchanges of Lemna minor L. as studied with the help of the enriched stable isotope and of a (n,α) nuclear reaction. Plant Physiol. 63, 283–288.PubMedGoogle Scholar
  118. Thiel, H. and Finck, A. (1973). Ermittlung von Grenzwerten optimaler Kupfer Versorgung fur Hafer und Sommergerste. Z. Pflanzenernahr. Bodenk. 134, 107–125.Google Scholar
  119. Tinker, P.B., Jones, M.D and Durall, D.M. (1992). A functional comparison of ecto and endo mycorrhizae. In “Mycorrhizae in Ecosystems” (D. J. Read, D. H. Lewis, A. H. Fitter and I. J. Alexander, eds), pp. 303–310. CAB International, Wellingford, U.K.Google Scholar
  120. Toyota, K., Koizumi, N. and Sato, F. (2003). Transcriptional activation of Phosphoenol pyruvate carboxylase by Phosphorus deficiency in tobacco . J. Exp. Bot. 54, 961–969.PubMedCrossRefGoogle Scholar
  121. Uexkiill, H.R. von. (1985). Chlorine in the nutrition of palm trees, Oleagineux. 40, 67–72.Google Scholar
  122. Usha Kumari, J. and Reddy, K.J. (2000). Effect of Phosphorus and Zinc on growth and fruit yield of Okra (Abelmoschus esculentus (L) Moench). Bulletin of Pure and Applied Sciences. 19 B (No.1), 17–19.Google Scholar
  123. Vance, C.P., Uhde-Stone C, Allan, D.L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytologist. 157, 423–447.CrossRefGoogle Scholar
  124. Vaughan, A.K.F. (1977). The relation between the concentration of boron I the reproductive and vegetative organs of maize plants and their development. Rhod. J. Agric. Res. 15, 163–170.Google Scholar
  125. Vallee, B.L. and Falchuk, K.H. (1993). The biochemical basis of zinc physiology. Physiol. Rev. 73, 79–118.PubMedGoogle Scholar
  126. Vidmar, J.J., Schjoerring, J.K., Touraine, B. and Glass, A.D.M. (1999). Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare. Plant Mol. Biol. 40, 883–892.PubMedCrossRefGoogle Scholar
  127. Vielemeyer, H. P., Fischer, F. and Bergmann, W. (1969). Untersuchungen uber den Einfulss der Mikronahrstoffe Eisen und Mangan auf den Stickstoff - Stoffwechsel Landwirtschaftelicher Kulturpflanzen. 2. Mitt.: Untersuchungen uber die Wirkung des Mangans auf die Nitratreduktion und den Gehalt an frein Aminosauren in jungen Buschbohenpflanzen. Albrecht - Thaer - Arch. 13, 393–404.Google Scholar
  128. Vunkova-Radeva, R., Schiemann, J., Mendel, R.-R., Salcheva, G. and Georgieva, D. (1988). Stress and activity of molybdenum-containing complex (molybdenum co-factor) in winter wheat seeds. Plant Physiol. 87, 533–535.PubMedGoogle Scholar
  129. Wagner, H. and Michael, G. (1971). Der Einfluss unterschiedlicher Stickstoffversorgung auf die Cytokininbildung in Wurzeln von Sonnenblumenpflanzen. Biochem Physiol. Pflanz. 162, 147–158.Google Scholar
  130. Walch-Liu, P., Neumann, G., Bangerth, F. and Engels, C. (2000). Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Exp. Bot. 51, 227–237.PubMedCrossRefGoogle Scholar
  131. Walker, C.D., Graham, R.D., Madison, J.T., Cary, E.E. and Welch, R.M. (1985). Effects of Ni deficiency on some nitrogen metabolites in cowpea (Vigna unguiculata L. Walp). Plant Physiol. 79, 474–479.PubMedGoogle Scholar
  132. Walker, C.J. and Weinstein, J.D. (1991). Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts. Plant Physiol. 95, 1189–1196.PubMedGoogle Scholar
  133. Wallace, A., Frolich, E. and Lunt, O.R. (1966). Calcium requirements of higher plants. Nature (London). 209, 634.Google Scholar
  134. Wang, Y-H, Garvin, D.F. and Kochian, L.V. (2002). Rapid induction of regulatory and transporter genes in response to phosphorus, potassium and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere- mediated signals. Plant Physiology 130, 1361–1370.PubMedGoogle Scholar
  135. Wedding, R.T. and Black, M.K. (1988). Role of magnesium in the binding of the substrate and effectors to phosphoenol pyruvate carbozylase from a CAM plant. Plant Physiol. 87, 443–446.PubMedCrossRefGoogle Scholar
  136. Wheeler, D.N., Edmeades, D.C., Christie, R.A. and Gardner, R. (1992c). Effect of aluminium on growth of 34 plant species: a summary of results obtained in low ionic strength solution culture. Plant Soil. 146, 61–66.Google Scholar
  137. Wintz, H. and Vulpe, C. (2002). Plant copper chaperones. Biochem. Soc. Trans. 30, 732–735.PubMedGoogle Scholar
  138. Willenbrink, J. (1967). Uber Beziehungen zwischen proteinumsatz und Schwefelver-sorgungder chloroplasten. Z. Pflanzenphysiol. 56, 427–438.Google Scholar
  139. Wong, M.H. and Bradshaw, A.D. (1982). A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytol. 91, 255–261.Google Scholar
  140. Woolhouse, H.W. (1983). Toxicity and tolerance in the responses of plants of metals. In: Lange, O. L., P. S. Nobel., C. B. Osmond and H. Ziegler (eds.) Physiological Plant Ecology III. Responses to chemical and biological environment. Springer-Verlag, Berlin, Heidelberg and New York. pp 245–300.Google Scholar
  141. Yang, Z., Sivaguru, M., Horst, W ans Matsumoto, H. 2000. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Plant Physiol. 110, 72–77.Google Scholar
  142. Yeo, A.R., Caprow, S.J.M. and Flowers, T.J. (1985). The effect of salinity upon photosynthesis in rice (Oryza sativa L.): Gas excahange by individual leaves in relation to their salt content. J. Exp. Bot. 36, 1240–1248.Google Scholar
  143. Zhang, H., Jennings, A., Barlow, P.W. and Forde, B.G. (1999). Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA. 96, 6529–6534.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

    • 1
  1. 1.Department of BotanyOsmania UniversityHyderabadIndia

Personalised recommendations