Advertisement

BUBBLE TREE DRAWING ALGORITHM

  • S. Grivet
  • D. Auber
  • J. P. Domenger
  • G. Melancon
Part of the Computational Imaging and Vision book series (CIVI, volume 32)

Abstract

In this paper, we present an algorithm, called Bubble Tree, for the drawing of general rooted trees. A large variety of algorithms already exists in this field. However, the goal of this algorithm is to obtain a better drawing which makes a trade off between the angular resolution and the length of the edges. We show that the Bubble Tree drawing algorithm provides a planar drawing with at most one bend per edge in linear running time.

Keywords

Angular Resolution Graph Draw Angular Sector Planar Drawing Aesthetic Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Amenta, N. and Klingner, J. (2002). Case study: Visualizing sets of evolutionary trees. In IEEE Infovis'02, pages 71–76.Google Scholar
  2. Auber, D. (2001). Tulip. In Mutzel, P., Jünger, M., and Leipert, S., editors, 9th Symp. Graph Drawing, volume 2265 of Lecture Notes in Computer Science, pages 335–337. Springer-Verlag.Google Scholar
  3. Auber, D. (2003). Graph Drawing Softwares, chapter Tulip- A Huge Graphs Visualization Framework, pages 80–102. Mathematics and Visualization series. Springer-Verlag.Google Scholar
  4. Battista, G., Eades, P., Tamassia, R., Tollis, I., and Tollis, G. (1999). Graph Drawing : Algorithms for the Visualization of Graphs. Prentice-Hall.Google Scholar
  5. Bruls, D. M., Huizing, C., and VanWijk, J. J. (2000). Squarified treemaps. In Data Visualization 2000, Proceedings of the joint Eurographics and IEEE TCVG Symposium on Visualization, pages 33–42. Springer.Google Scholar
  6. Buchheim, C., Jünger, M., and Leipert, S. (2002). Improving walker’s algorithm to run in linear time. Technical report, Zentrum für Angewandte Informatik Koln, Lehrstuhl Junger.Google Scholar
  7. Carriere, J. and Kazman, R. (1995). Interacting with huge hierarchies: Beyond cone trees. In G. and Eick, S., editors, IEEE Symposium on Information Visualization, pages 74–78. Atlanta, Georgia Institute for Electrical and Electronics Engineers.Google Scholar
  8. Eades, P. (1992). Drawing free trees. Bulletin of the Institute for Combinatorics and its Applications, 5:10–36.zbMATHMathSciNetGoogle Scholar
  9. Freund, R. M., Sun, J., and Xu, S. (2003). Solution methodologies for the smallest enclosing circle problem. Computational Optimization and Applications, 24–26.Google Scholar
  10. Jeon, C. S. and Pang, A. (1998). Reconfigurable disc trees for visualizing large hierarchical information space. In IEEE InfoVis’98, pages 19–25.Google Scholar
  11. Knuth, D. E. (1973). The Art of Computer Programming, volume 1. Addison-Wesley.Google Scholar
  12. Munzner, T. (1997). H3: laying out large directed graphs in 3d hyperbolic space. In IEEE Infovis'97, pages 2–10.Google Scholar
  13. Reingold, E. M. and Tilford, J. S. (1981). Tidier drawings of trees. IEEE Transactions on Software Engineering, 7(2):223–228.Google Scholar
  14. Robertson, G. G., Mackinlay, J. D., and Card, S. K. (1991). Cone trees: Animated 3d visualizations of hierarchical information. In SIGCHI, Conference on Human Factors in Computing Systems, pages 189–194. ACM.Google Scholar
  15. Shneiderman, B. (1991). Tree visualization with tree-maps : A 2-d space filling approach. In ACM Transaction on graphics, pages 92–99.Google Scholar
  16. Teoh, Soon Tee and Ma, Kwan Liu (2002). Rings: A technique for visualizing large hierarchies. In Kobourov, S. G. and Goodrich, M. T., editors, Graph Drawing, volume 2528 of Lecture Notes in Computer Science, pages 268–275. Springer.Google Scholar
  17. Walker, J. Q. (1990). A node positioning algorithm for general trees. Software Practice and Experience, 20:685–705.Google Scholar
  18. Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). In Maurer, Hermann A., editor, New Results and New Trends in Computer Science, Lecture Notes in Computer Science, 555. Springer-Verlag.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • S. Grivet
    • 1
  • D. Auber
    • 1
  • J. P. Domenger
    • 1
  • G. Melancon
    • 2
  1. 1.LaBRI-Université Bordeaux 1, 351 Cours de la LibérationTalenceFrance
  2. 2.LIRMM MontepellierFrance

Personalised recommendations