INTERACTIVE CONTRAST ENHANCEMENT BY HISTOGRAM WARPING

  • Mark Grundland
  • Neil A. Dodgson
Part of the Computational Imaging and Vision book series (CIVI, volume 32)

Abstract

We present an interactive contrast enhancement technique for the global histogram modification of images. Through direct manipulation, the user adjusts contrast by clicking on the image. Contrast around different key tones can be adjusted simultaneously and independently without altering their luminance. Histogram warping by monotonic splines performs the gray level mapping. User interfaces for contrast correction find application in digital photography, remote sensing, medical imaging, and scientific visualization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gonzalez, R. C. and Woods, R. E. 2002. Digital Image Processing, 2 ed. Prentice Hall.Google Scholar
  2. 2.
    Zamperoni, P. 1995. Image Enhancement. Advances in Imaging and Electron Physics, 92, 1–77.Google Scholar
  3. 3.
    Hummel, R. A. 1975. Histogram Modification Techniques. Computer Graphics & Image Processing, 4, 3, 209–224.MathSciNetGoogle Scholar
  4. 4.
    Gonzalez, R. C. and Fittes, B. A. 1977. Gray-Level Transformations for Interactive Image Enhancement. Mechanism & Machine Theory, 12, 1, 111–122.Google Scholar
  5. 5.
    O'Gorman, L. and Brotman, L. S. 1985. Entropy-Constant Image Enhancement by Histogram Transformation. Proceedings of SPIE, 575, 106–113.Google Scholar
  6. 6.
    Thompson, D. D. and Gonzalez, R. C. 1983. Image Enhancement by Moment Specification. In Proceedings of the 15th Southeastern Symposium on System Theory, 134–137.Google Scholar
  7. 7.
    Frei, W. 1977. Image Enhancement by Histogram Hyperbolization. Computer Graphics & Image Processing, 6, 3, 286–294.Google Scholar
  8. 8.
    Xu, X. and Miller, E. L. 2002. Entropy Optimized Contrast Stretch to Enhance Remote Sensing Imagery. In Proceedings of 16th International Conference on Pattern Recognition, vol. 3, 915–918.Google Scholar
  9. 9.
    Guo, L. J. 1991. Balance Contrast Enhancement Technique and Its Application in Image Colour Composition. International Journal of Remote Sensing, 12, 10, 2133–2151.Google Scholar
  10. 10.
    Braun, G. J. and Fairchild, M. D. 1999. Image Lightness Rescaling Using Sigmoidal Contrast Enhancement Functions. Journal of Electronic Imaging, 8, 4, 380–393.Google Scholar
  11. 11.
    Raji, A., Thaibaoui, A., Petit, E., et al. 1998. A Gray-Level Transformation-Based Method for Image Enhancement. Pattern Recognition Letters, 19, 13, 1207–1212.Google Scholar
  12. 12.
    Sang-Yeon, K., Dongil, H., Seung-Jong, C., et al. 1999. Image Contrast Enhancement Based on the Piecewise-Linear Approximation of Cdf. IEEE Transactions on Consumer Electronics, 45, 3, 828–834.Google Scholar
  13. 13.
    Marks, J., Andalman, B., Bearsley, P. A., et al. 1997. Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation. In Proceedings of SIGGRAPH, 389–400.Google Scholar
  14. 14.
    Sims, K. 1993. Interactive Evolution of Equations for Procedural Models. Visual Computer, 9, 8, 466–476.Google Scholar
  15. 15.
    Taosong, H., Lichan, H., Kaufman, A., et al. 1996. Generation of Transfer Functions with Stochastic Search Techniques. In Proceedings of the 7th IEEE Visualization Conference, 227–234.Google Scholar
  16. 16.
    Gregory, J. A. and Delbourgo, R. 1982. Piecewise Rational Quadratic Interpolation to Monotonic Data. IMA Journal of Numerical Analysis, 2, 123–130.Google Scholar
  17. 17.
    Sarfraz, M., Al-Mulhem, M., and Ashraf, F. 1997. Preserving Monotonic Shape of the Data Using Piecewise Rational Cubic Functions. Computers & Graphics, 21, 1, 5–14.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mark Grundland
    • 1
  • Neil A. Dodgson
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeCambridgeUnited Kingdom

Personalised recommendations