INTEGRATED OPTICS DESIGN: SOFTWARE TOOLS AND DIVERSIFIED APPLICATIONS

  • Christoph Wächter
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 216)

Abstract

The design of integrated optics (IO) devices requires dedicated numerical algorithms and related software. Today's commercial tools cover a wide range of the needs, and manifold tasks can be solved this way. A short survey on specific IO-design tools and other design software that is related to particular aspects of IO is given. The basic physics and math behind the graphical user interface is discussed in some detail for a few of the popular schemes for mode solving and field propagation. Aspects of system design and the multi-physics character of IO-microsystems are considered, and the potential complexity of IO-design is demonstrated for a micro-optical coupling of a fibre and a photonic crystal waveguide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. M. Jensen, The nonlinear coherent coupler, IEEE Journal Quantum Electronics, QE-18 1579-1583 (1982)ADSGoogle Scholar
  2. 2.
    M. D. Feit, and J. A. Fleck, Light propagation in graded-index optical fibers, Applied Optics 17, 3990-3998 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    R. Pregla, and W. Pascher, The method of lines, in T. Itoh (ed.), Numerical Technics for Microwave and Millimeter Wave Passive Structures, Wiley, New York, 381-446 (1989).Google Scholar
  4. 4.
    K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation 14, 302-307 (1966).ADSMATHCrossRefGoogle Scholar
  5. 5.
    M. Koshiba, and K. Inoue, Simple and efficient finite-element analysis of microwave and optical waveguides, IEEE Transactions Microwave Theory & Technology 40, 371-377 (1992).CrossRefADSGoogle Scholar
  6. 6.
    P. Lüsse, et al., Analysis of vectorial mode fields in optical waveguides by a new finite difference method, Journal of Lightwave Technology 12, 487-493 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    A. S. Sudbø, Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides, Pure and Applied Optics 3, 381-388 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    M. Paulus, and O.J.F. Martin, A fully vectorial technique for scattering and propagation in three-dimensional stratified photonic structures, Optical and Quantum Electronics 33, 315-325 (2001).CrossRefGoogle Scholar
  9. 9.
    F. Schmidt, et al., Adaptive multigrid methods for the vectorial Maxwell eigenvalue problem for optical waveguide design, in W. Jäger et al. (eds.), Mathematics - Key Technology for the Future: Joint Problems between Universities and Industry, Springer, 270-292 (2003).Google Scholar
  10. 10.
  11. 11.
    Concept to Volume B.V. (C2V); http://www.c2v.nl/
  12. 12.
    JCMWave GmbH; http://www.jcmwave.de/
  13. 13.
    Optiwave Systems; http://www.optiwave.com/
  14. 14.
    Photon Design; http://www.photond.com/
  15. 15.
    RSOFT Design Group; http://www.rsoftdesign.com/
  16. 16.
  17. 17.
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    Grating Solver; http://www.gsolver.com/
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
    S. G. Johnson, and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Optics Express 8, 173-190 (2001); http://ab-initio.mit.edu/mpb/download.html ADSCrossRefGoogle Scholar
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
  41. 41.
    J. Moloney, et al., AMR FDTD solver for nanophotonic and plasmonic applications, Proc. SPIE 5451, 97-104 (2004).ADSCrossRefGoogle Scholar
  42. 42.
  43. 43.
    R. Moosburger, et al., Shaping the digital optical switch using evolution strategies, IEEE Photonics Technology Letters 9, 1184-1186 (1997).CrossRefGoogle Scholar
  44. 44.
    R. März, Integrated Optics: Design and Modeling, Ch. 4.9, Artech House (1995).Google Scholar
  45. 45.
    P. C. Kendall, et al., Theory for calculating approximate values for the propagation constants of an optical rib waveguide by weighting the refractive indices, IEE Proceedings A 134, 699-702 (1987).Google Scholar
  46. 46.
    W. Huang, H. A. Haus, and H. N. Yoon, Ananlysis of buried-channel waveguides and couplers: scalar solution and polarization correction, Journal of Lightwave Technology 8, 642-648 (1990).ADSCrossRefGoogle Scholar
  47. 47.
    C. J. Smartt, et al., Exact polarised rib waveguide analysis, Electronics Letters 30, 1127-1128 (1994).CrossRefGoogle Scholar
  48. 48.
    C. Vasallo, Optical mode solvers, Optical and Quantum Electronics 29, 95-114 (1997).CrossRefGoogle Scholar
  49. 49.
    R. Smith, S. N. Houde-Walter, and G.W. Forbes, Mode determination for planar waveguides using the four-sheeted dispersion relation, IEEE Journal Quantum Electronics 28, 1520-1526 (1992).ADSCrossRefGoogle Scholar
  50. 50.
    C. Wächter, and K. Hehl, General treatment of slab waveguides including lossy materials and arbitrary refractive index profiles, Physica Status Solidi 102, 835-842 (1987).CrossRefADSGoogle Scholar
  51. 51.
    T. E. Batchman, and G. M. McWright, Mode coupling between dielectric and semiconductor planar waveguides, IEEE Journal Quantum Electronics QE-18 782-788 (1982).ADSCrossRefGoogle Scholar
  52. 52.
    J. M. Hammer, et al., Isolators, polarizers and other optical waveguide devices using a resonant-layer effect, Journal Lightwave Technology 22, 1754-1763 (2004).ADSCrossRefGoogle Scholar
  53. 53.
    J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics 114, 185-200 (1994).MathSciNetMATHADSCrossRefGoogle Scholar
  54. 54.
    G. R. Hadley, and R. E. Smith, Full vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions, Journal of Lightwave Technology, 13, 465-469 (1995).CrossRefADSGoogle Scholar
  55. 55.
    T. Tischler, and W. Heinrich, The perfectly matched layer as lateral boundary in finite difference transmission line analysis, Int. Microwave Symposium Digest 1, 121-24 (2000).Google Scholar
  56. 56.
    G. R. Hadley, High-accuracy finite-difference equations for dielectric waveguide analysis I: uniform regions and dielectric interfaces, Journal of Lightwave Technology 20, 1210-1218 (2002).ADSCrossRefGoogle Scholar
  57. 57.
    G. R. Hadley, High-accuracy finite-difference equations for dielectric waveguide analysis II: dielectric corners, Journal of Lightwave Technology 20, 1219-1231 (2002).ADSCrossRefGoogle Scholar
  58. 58.
    T. Lu, and D. Yevick, Comparative Evaluation of a Novel Series Approximation for Electromagnetic Fields at Dielectric Corners With Boundary Element Method Applications, Journal of Lightwave Technology 22, 1426-1432 (2004).CrossRefADSGoogle Scholar
  59. 59.
    W. Hackbusch, Multi-grid methods and applications, Springer, Berlin (1985)MATHGoogle Scholar
  60. 60.
    P. Lüsse, K. Ramm, H.-G. Unger and J. Schüle, Comparison of a vectorial and new semivectorial finite difference approach for optical waveguides, Optical and Quantum Electronics 29, 115-120 (1997).CrossRefGoogle Scholar
  61. 61.
    B. M. A. Rahman, and J. B. Davies, Penalty function improvement of waveguide solution by finite element, IEEE Transactions Microwave Theory and Techniques 32, 922-928 (1984).ADSCrossRefGoogle Scholar
  62. 62.
    A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proceedings A 135, 493-500 (1988).Google Scholar
  63. 63.
    F. Schmidt, and L. Zschiedrich, Adaptive numerical methods for problems of integrated optics, Proc. SPIE 4987, 83-94 (2003).ADSCrossRefGoogle Scholar
  64. 64.
    L. Zschiedrich, JCMWave GmbH, Putzbrunn, Germany; http://www.jcmwave.de/
  65. 65.
    W. Biehlig, et al., Light propagation in a planar dielectric slab waveguide with step discontinuities, Optical and Quantum Electronics 18, 219-228 (1986).CrossRefGoogle Scholar
  66. 66.
    R. Pregla, MoL-BPM Method of Lines Based Beam Propagation Method, in W. P. Huang (Ed.), Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices, Progress in Electromagnetic Research 11(Elsevier, New York, 1995).Google Scholar
  67. 67.
    D. F. G. Gallagher, and T. Felici, Eigenmode expansion methods for optical propagation in photonics - pros and cons, Proc. SPIE 4987, 69-82 (2003) .ADSCrossRefGoogle Scholar
  68. 68.
    L. Thylen, and C. M. Lee, Beam propagation method based on matrix diagonalisation, Journal of the Optical Society of America A 9, 142-146 (1992).ADSCrossRefGoogle Scholar
  69. 69.
    G. R. Hadley, Wide angle beam propagation using Padé approximant operators, Optics Letters 17, 1426-1428 (1992).MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    H. Hoekstra, On beam propagation methods for modelling in integrated optics, Optical and Quantum Electronics 29, 157-171 (1997).CrossRefGoogle Scholar
  71. 71.
    J. P. da Silva, H. E. Herández-Figueroa, and A. M. F. Frasson, Improved vectorial finite-element BPM analysis for transverse anisotropic media, Journal of Lightwave Technology 21, 567-576 (2003).ADSCrossRefGoogle Scholar
  72. 72.
    T. Fujisawa, and M. Koshiba, Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides, Journal of Lightwave Technology 20, 1876-1884 (2002).CrossRefADSGoogle Scholar
  73. 73.
    P. Kaczmarski, and P. Lagasse, Bidirectional beam propagation method, Electronics Letters 24, 675-676 (1988).ADSCrossRefGoogle Scholar
  74. 74.
    K. Hayashi, M. Koshiba, Y. Tsuji, S. Yoneta and R. Kaji, Combination of beam propagation method and mode expansion propagation method for bidirectional optical beam propagation analysis, Journal of Lightwave Technology 16, 2040-2045 (1998).CrossRefADSGoogle Scholar
  75. 75.
    H. Rao, M. J. Steel, R. Scarmozzino and R. M. Osgood, Jr., Complex propagators for evanescent waves in bidirectional beam propagation method, Journal of Lightwave Technology 18, 1155-1160 (2000).ADSCrossRefGoogle Scholar
  76. 76.
    K. L. Shlager, and J. B. Schneider, A survey of the finite-difference time domain literature, in A. Taflove (Ed.), Advances in computational electrodynamics: the finite difference time domain method (Artech House, 1998), pp. 1- 62.Google Scholar
  77. 77.
    S. C. Hagness, Microcavity resonators, ibid., pp. 561-609.Google Scholar
  78. 78.
    R. März, Integrated Optics: Design and Modeling, Ch. 6.5 (Artech House, 1995).Google Scholar
  79. 79.
    S. Suzuki, Y. Kokubun, M. Nakazawa, T. Yamamoto and S. T. Chu, Ultrashort optical pulse transmission characteristics of vertically coupled microring resonator add/drop filter, Journal of Lightwave Technology 19, 266-271 (2001).CrossRefADSGoogle Scholar
  80. 80.
    M. K. Smit, Integrated Optics in silicon-based aluminium oxide, PhD Thesis, Ch. 6 (Delft University of Technology, 1991).Google Scholar
  81. 81.
    R. Adar, et al., Broadband array multiplexers made with silica waveguides on silicon, Journal of Lightwave Technology 11, 212-219 (1993).CrossRefADSGoogle Scholar
  82. 82.
    M. Gerken, and D. A. B. Miller, Multilayer thin-film stacks with step-like spatial beam shifting, Journal Lightwave Technology 22, 612-618 (2004).ADSCrossRefGoogle Scholar
  83. 83.
    K. I. White, Practical application of the refracted-near-field technique for the measurement of optical fibre refractive index profiles, Optic and Quantum Electronics 11, 185-196 (1979).ADSCrossRefGoogle Scholar
  84. 84.
    I. Moerman, P. P. Van Daele, and P. M .Demeester, A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices, IEEE Journal of Selected Topics in Quantum Electronics 3, 1308-1320 (1997).CrossRefGoogle Scholar
  85. 85.
    Th. D. Happ, M. Kamp, and A. Forchel, Photonic crystal tapers for ultracompact mode conversion, Optics Letters 26, 1102-1104 (2001).ADSCrossRefGoogle Scholar
  86. 86.
    N. Moll, and G.-L. Bona, Comparison of three-dimensional photonic crystal slab waveguides with two-dimensional photonic crystal waveguides: efficient butt coupling into these photonic crystal waveguides, Journal of Applied Physics 93, 4986-4991 (2003).CrossRefADSGoogle Scholar
  87. 87.
    J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. Leblanc, S. A. Jacobson, W. J. Kessler, M. B. Frish, Fabrication of silicon-on-insulator adiabatic tapers for low loss optical interconnection of photonic devices, Proc. SPIE 4997, 157-170 (2003).CrossRefGoogle Scholar
  88. 88.
    C. Wächter, et al., Fibre-chip coupling with silicon micro-lenses, to appear in Proc. SPIE 5728(2005).Google Scholar
  89. 89.
    I. Ichimura, S. Hayashi, and G. S. Kino, High-density optical recording using a solid immersion lens, Applied Optics 36, 4339-4348 (1997).ADSCrossRefGoogle Scholar
  90. 90.
    M. Born, and E. Wolf, Principles of Optics, (Cambridge University Press, Cambridge, 1999).Google Scholar
  91. 91.
    D. Michaelis, U. Peschel, C. Wächter, A. Bräuer, Coupling coefficients of photonic crystal waveguides, Proc. SPIE 4987, 114-125 (2003).ADSCrossRefGoogle Scholar
  92. 92.
    D. Michaelis, et al., “Reciprocity theorem and perturbation theory for photonic crystal waveguides”, Phys. Rev. E 68, 065601(R) 1-4 (2003)CrossRefGoogle Scholar
  93. 93.
    S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, Adaptive FEM solver for the computation of electromagnetic eigenmodes in 3D photonic crystal structures, Proc. SCEE04 - Scientific Computing in Electrical Engineering, Springer Verlag (to be published)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Christoph Wächter
    • 1
  1. 1.Fraunhofer Institute for Applied Optics and Precision EngineeringAlbert-Einstein-Strasse 7JenaGermany

Personalised recommendations