The Intuitiveness and Truth of Modern Physics

  • Peter Mittelstaedt
Part of the The Western Ontario Series in Philosophy of Science book series (WONS, volume 70)


Quantum Mechanics Classical Mechanic Inertial Frame Modern Physic Special Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ehlers, J., Pirani, F. A., Schild A. and E. Schild (1972), “The Geometry of Free Fall and Light Propagation” in: O’Raiffeartaigh (ed.), General Relativity, Clarendon, Oxford, 63–84.Google Scholar
  2. Falkenburg, B. (2004), “Functions of Intuition in Quantum Physics”, this volume pp. 267–292.Google Scholar
  3. Hentschel, K. (1990), Interpretationen und Fehlinterpretationen der speziellen und allgemeinen Relativitätstheorie durch Zeitgenossen Albert Einsteins, Birkhäuser, Basel.Google Scholar
  4. Huber, R. (2000), Einstein und Poincaré: die philosophische Beurteilung physikalischer Theorien, Mentis, Paderborn.Google Scholar
  5. Huber, R. (2004), “Intuitive Cognition and the Formation of Theories”, this volume pp. 293–324.Google Scholar
  6. Kant, I. (1787), The Critique of Pure Reason, translated by P. Guyer and A. Wood, The Cambridge Edition of the Works of Immanuel Kant, Cambridge 1998.Google Scholar
  7. Könneker, K. (2001), Auflösung der Natur — Auflösung der Geschichte, J.B. Metzler, Stuttgart.Google Scholar
  8. Laugwitz, D. (1960), Differentialgeometrie, B.G. Teubner, Stuttgart.Google Scholar
  9. Lévy-Leblond, J. M. (1976), American Journal of Physics 44, 271.CrossRefGoogle Scholar
  10. Mach, E. (1901), Die Mechanik in ihrer Entwicklung, 4th Edition, F. A. Brockhaus, Leipzig.Google Scholar
  11. Martzke, R. and J. A. Wheeler(1964), “Gravitation as Geometry I: The Geometry of Space-Time and the Geometrodynamical Standard Meter” in: Chiu, H.Y. andW. F. Hoffman (eds.), Gravitation and Relativity, W.A. Benjamin, New York, 40–64.Google Scholar
  12. Mittelstaedt, P. (1970), Klassische Mechanik, 1st ed. (1995), 2nd ed. BI-Wissenschaftsverlag, Mannheim.Google Scholar
  13. Mittelstaedt, P. (1976/89), Der Zeitbegriff in der Physik, BI-Wissenschaftsverlag, Mannheim.Google Scholar
  14. Piron, C. (1976), Foundations of Quantum Physics, W.A. Benjamin, Reading, Massachussetts.Google Scholar
  15. Poincaré, H. (1898), “La Mesure du Temps” in: Revue de Métaphysique et de Moral VI, 1–13.Google Scholar
  16. Popper, K. (1963), Conjectures and Refutations, Routledge & Kegan Paul, London.Google Scholar
  17. Popper, K. (1972), Objective Knowledge: An Evolutionary Approach, Clarendon Press, Oxford.Google Scholar
  18. Scheibe, E. (1997/99), Die Reduktion physikalischer Theorien, Vols. I and II, Springer, Heidelberg.Google Scholar
  19. Schröter, J. and U. Schelb (1992), Reports on Mathematical Physics 31, 5.CrossRefGoogle Scholar
  20. Schröter, J. and U. Schelb (1994), “A Space-Time Theory with Rigorous Axiomatics” in: Majer U. and H.-J. Schmidt (eds.), Semantical Aspects of Spacetime Theories, BI-Wissenschaftsverlag, Mannheim.Google Scholar
  21. Solèr, M.-P. (1995), “Characterisation of Hilbert Spaces by Orthomodular Lattices” in: Communications in Algebra 23(1), 219–243.Google Scholar
  22. Sudarshan, E. C. G. and N. Mukunda (1974), Classical Dynamics: A Modern Perspective, John Wiley & Sons, New York.Google Scholar
  23. Weingartner, P. (2000), Basic Questions on Truth, Kluwer Academic Publishers, Dordrecht.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Peter Mittelstaedt
    • 1
  1. 1.Universität zu KölnGermany

Personalised recommendations