Skip to main content

Comparative Salt Tolerance Of Perennial Grasses

  • Conference paper
Ecophysiology of High Salinity Tolerant Plants

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 40))

Salt tolerance mechanisms of three perennial halophytic grasses (Aeluropus lagopoides (Linn.) Trin. ex Thw., Sporobolus ioclados (Trin.) C.E. Hubbard and Urochondra setulosa (Nees ex Trin.) Nees) were studied to determine if local species employ similar strategies to tolerate high salinity. We found different patterns of growth, water relations and ion uptake among the species tested. Aeluropus lagopoides and U. setulosa were grown in 0−1000 mM NaCl while S. ioclados in 0−500 mM NaCl under ambient conditions. Plants from non−saline controls had larger fresh and dry weights. Increasing concentrations of salinity from 600 – 1000 mM NaCl for A. lagopodides and U. setulosa and 500 mM NaCl for S. ioclados caused high salinity stress. Water and osmotic potential of the plants increased with increasing salinity and pressure potential decreased slightly in all species. Stomatal conductance in all grasses decreased substantially with the increase in salinity. Ash content remained low (̃12%) in both shoot and root of all grasses and showed little change with the increase in salinity except for S. ioclados, where in root it increased up to 35%. Na+ and Cl− concentrations showed a small increase while Ca2+, Mg2+ and K+ remained constant with increasing salinity. Various ion ratios for shoot and root also showed variation between the species tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Alshammary, S.F., Qian, Y.L. & Wallner, S.J. 2004. Growth response of four turfgrass species to salinity. Agricultural Water Management 66: 97–111.

    Article  Google Scholar 

  • Antlfinger, A. & Dunn, E.L. 1983. Water use and salt balance in three salt marsh succulents. American Journal of Botany 70: 561–567.

    Article  Google Scholar 

  • Ashraf, M. 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences 13: 17–42.

    Article  Google Scholar 

  • Ashraf, M. & Naqvi, M.I. 1991. Responses of three arid zone grass species to varying Na+/Ca2+ ratios in saline sand culture. New Phytologist 119: 285–290.

    Article  CAS  Google Scholar 

  • Ashraf, M., McNeilly, T. & Bradshaw, A.D. 1986. Tolerance of sodium chloride and its genetic basis in natural populations of four grass species. New Phytologist 103: 725–734.

    Article  Google Scholar 

  • Bajji, M., Kinet, J.M. & Lutts, S. 2002. Osmotic and ionic effects of NaCl on germination, early seedling growth and ion contet of Atriplex halimus (Chenopodiaceae). Canadian Journal of Botany 80: 297–304.

    Article  CAS  Google Scholar 

  • Bell, H.L. & O'leary, J.W. 2003. Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae). American Journal of Botany 90: 1416–1424.

    Article  Google Scholar 

  • Blumwald, E., Aharon, G.S. & Apse, M.P. 2000. Sodium transport in plant cells. Biochimica et Biophysica. Acta 1465: 140–151.

    CAS  Google Scholar 

  • Bodla, M.A., Chaudhry, M.R., Shamsi, S.R.A. & Baig, M.S. 1995. Salt tolerance in some dominant grasses of Punjab. In: M.A. Khan and I.A. Ungar. (Eds.), Biology of Salt Tolerant Plants. Chelsea, Michigan: Book Crafters. 190–198 pp.

    Google Scholar 

  • Carter, M.R., Webster, G.R. & Cairns, R.R. 1979. Calcium deficiency in some solonetzic soils of Alberta. Journal of Soil Science 30: 161–174.

    Article  CAS  Google Scholar 

  • Debez, A., Hamed, K.B., Grignon, C. & Abdelly, C. 2004. Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant and Soil 262: 179–189.

    Article  CAS  Google Scholar 

  • Dodd, G.L & Donovan, L.A. 1999. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. American Journal of Botany 86: 1146–1153.

    Article  PubMed  Google Scholar 

  • Dudeck, A.E., Peacock, C.H. & Wildmon, J.C. 1993. Physiological and growth responses of St. Angustine grass cultivars to salinity. Horticultural Science 28: 46–48.

    Google Scholar 

  • Forment, J., Naranjo, M.A., Roldán, M., Serrano, R. & Vicente, O. 2002. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant Journal 30: 511–519.

    Article  PubMed  CAS  Google Scholar 

  • Glenn, E.P. 1987. Relationship between cation accumulation and water content of salt-tolerant grasses and a sedge. Plant, Cell Environment 10: 205–212.

    CAS  Google Scholar 

  • Gomes Filho, E., Prisco, J.T., Campos, F.A.P. & Eneas Filho, J. 1983. Effects of NaCl salinity in vivo and in vitro on ribonuclease activity of Vigna unguiculata cotyledons during germination. Physiologia Plantarum 59: 183–188.

    Article  CAS  Google Scholar 

  • Gorham, J., Hughes, L.L. & Wyn Jones, R.G. 1980. Chemical composition of salt marsh plants from Ynys-Mon (Angelsey): the Concept of Physiotypes. Plant, Cell Environment 3: 309–318.

    CAS  Google Scholar 

  • Greenway, H. & Munns, R. 1980. Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology 31: 149–190.

    Article  CAS  Google Scholar 

  • Grieve, C.M., Poss, J.A., Grattan, S.R., Suarez, D.L., Benes, S.E. & Robinson, P.H. 2004. Evaluation of salt-tolerant forages for sequential water reuse systems II. Plant—ion relations. Agricultural Water Management 70: 121–135

    Google Scholar 

  • Gulzar, S., Khan, M.A. & Ungar, I.A. 2003a. Effects of Salinity on growth, ionic content and plant-water relations of Aeluropus lagopoides. Communications in Soil Science and Plant Analysis 34: 1657–1668

    Article  CAS  Google Scholar 

  • Gulzar, S., Khan, M.A. & Ungar, I.A. 2003b. Salt tolerance of a coastal salt marsh grass. Communications in Soil Science and Plant Analysis 34: 2595–2605.

    Article  CAS  Google Scholar 

  • Gulzar, S., Khan, M.A., Ungar, I.A. & Liu, X. 2005. Influence of salinity on growth and osmotic relations of Sporobolus ioclados. Pakistan Journal of Botany 37: 119–129.

    Google Scholar 

  • Hester, M.W., Mendelssohn, I.A. & Mckee, K.L. 1996. Intraspecific variation in salt tolerance and morphology in the coastal grass Spartina patens. American Journal of Botany 83: 1521–1527.

    Article  Google Scholar 

  • Hester, M.W., Mendelssohn, I.A. & Mckee, K.L. 2001. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens and Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany 46: 277–297.

    Article  CAS  Google Scholar 

  • Joshi, A.J., Mali, B.S. & Hinglajia, H. 2004. Salt tolerance at germination and early growth of two forage grasses growing in marshy habitats Environmental and Experimental Botany. (In Press — published online).

    Google Scholar 

  • Khan, M.A. 2002. An ecological overview of halophytes from Pakistan. In: H. Lieth, & M. Moschenko. (Eds.), Cash Crop Halophytes: Potentials, Pilot Projects, Basic and Applied Research on Halophytes and Saline Irrigation 10 years after Al-Ain Meeting (in press). Netherlands: Kluwer Academic Press. 167–187 pp.

    Google Scholar 

  • Khan, M.A. & Gul, B. 2001. Salt tolerant plants of coastal sabkhas of Pakistan. In: B. Boer, & H, Barth. (Eds.), Sabkhas of Arabian Peninsula and adjacent regions. Dordrecht, Netherlands: Kluwer Academic Press. 123 – 140 pp.

    Google Scholar 

  • Khan, M.A., Ungar, I.A. & Showalter, A.M. 1999. Effects of salinity on growth, ion content, and osmotic relations in Halopyrum mucronatum (L.) Stapf. Journal of Plant Nutrition 22: 191–204.

    Article  CAS  Google Scholar 

  • Khan, M.A., Ungar, I.A. & Showalter, A.M. 2000. The effect of salinity on the growth, water status, and ion content of a leaf of a succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. Journal of Arid Environments 45: 73–84.

    Article  Google Scholar 

  • Kumar, A. 1990. Forage yield of grasses as affected by the degree of soil sodicity and soil amelioration caused by their growth. In: A. Kumar. (Ed.), Proceedings of Indo-Pak workshop on soil salinity and water management. pp. 434–445. Islamabad, Pakistan: PARC.

    Google Scholar 

  • La Peyre, M.K. & Rowe, S. 2003. Effects of salinity changes on growth of Ruppia maritima. Aquatic Botany 77:235–241

    Article  Google Scholar 

  • Lissner, J. & Schierup, H.H. 1997. Effects of salinity on the growth of Phragmitis australis. Aquatic Botany 55:247–260.

    Article  CAS  Google Scholar 

  • Maathuis, F.J.M. & Amtmann, A. 1999. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany 84: 123–133.

    Article  CAS  Google Scholar 

  • Mahmood, K., Malik, K.A., Lodhi, M.A. K. & Sheikh, K.H. 1996. Seed germination and salinity tolerance in plant species growing on saline wastelands. Biologia Plantarum, 38: 309–315.

    Article  Google Scholar 

  • Marcum, K.B. & Murdoch, C.L. 1990. Growth responses, ion relations, and osmotic adaptations of eleven C4 Turfgrasses to salinity. Agronomy Journal 82: 892–896.

    Google Scholar 

  • Mauchamp, A. & Mésleard, F. 2001. Salt tolerance in Phragmites australis populations from coastal Mediterranean marshes. Aquatic Botany 70: 39–52.

    Article  CAS  Google Scholar 

  • Moore, R.H. 1960. Laboratory Guide for Elementary Plant Physiology; Minneapolis, Minnesota: Burgess Publishing Company.

    Google Scholar 

  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25: 239–250.

    Article  CAS  Google Scholar 

  • Muscolo, A., Panuccio, M.R. & Sidari, M. 2003. Effects of salinity on growth, carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Science 164: 1103–1110.

    Article  CAS  Google Scholar 

  • Parida, A.K. & Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324–349.

    Article  PubMed  CAS  Google Scholar 

  • Peacock, C.H. & Dudeck, A.E. 1985. Physiological and growth response of seashore Paspalum to salinity. Horticultural Science 20: 111–112.

    Google Scholar 

  • Peng, Y.H., Zhu, Y.F., Mao, V., Wang, S.M., Su, W.A. & Tang, Z.C. 2004. Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. Journal of Experimental Botany 55: 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Poustini, K. & Siosemardeh, A. 2004. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Research 85: 125–133.

    Article  Google Scholar 

  • Prisco, J.T. 1987. Contribuicao ao estudo da fisiologia do estresse salino durante a germinacao e estabelecimento da plantula de uma glico′ fita (Vigna unguiculata (L.) Walp.). Tese de Professor Titular. Universidade do Ceara′, Fortaleza, Brasil.

    Google Scholar 

  • Ramadan, T. 2001. Dynamics of Salt Secretion by Sporobolus spicatus (Vahl) Kunth from sites of differing salinity. Annals of Botany 87: 259–266.

    Article  Google Scholar 

  • Russell, J.S. 1976. Comparative salt tolerance of some tropical and temperate legumes and tropical grasses. Australian Journal of Experimental Agriculture and Animal Husbandry 16: 103–109.

    Article  CAS  Google Scholar 

  • Serrano, R., 1996. Salt tolerance in plants and microorganisms: toxicity targets and defence responses. International Review of Cytology 165: 1–52.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, R. & Gaxiola, R. 1994. Microbial models and salt stress tolerance in plants. Critical Reviews in Plant Sciences 13: 121–138.

    Article  CAS  Google Scholar 

  • Shamsi, S.R.A. & Ahmad, B. 1986. Studies on salt tolerance of purple nutsedge (Cyperus rotundus). Indian Journal of Experimental Biology 24: 499–504.

    Google Scholar 

  • Shannon, M.C. 1978. Testing salt tolerance variability among tall wheatgrass lines. Agronomy Journal 70: 719 –722.

    CAS  Google Scholar 

  • Shen, Y.Y., Li, Y. & Yan, S.G. 2003. Effects of salinity on germination of six salt-tolerant forage species and their recovery from saline conditions. New Zealand Journal of Agricultural Research 46: 263–269.

    Google Scholar 

  • SPSS. 2002. SPSS 11 for Windows update. Chicago, Illinois: SPSS Inc.

    Google Scholar 

  • Tobe, K., Li, X. & Omasa, K. 2002. Effects of sodium, magnesium and calcium salts on seed germination and radicle survival of a halophyte, Kalidium capsicum (Chenopodiaceae). Australian Journal of Botany 50: 163–169.

    Article  CAS  Google Scholar 

  • Tyerman, S.D. & Skerrett, M. 1999. Root ion channels and salinity. Scientia Horticulturae 78: 175–325.

    Article  CAS  Google Scholar 

  • Venables, V. & Wilkins, D.A. 1978. Salt tolerance in pasture grasses. New Phytologist 80: 613–622.

    Article  CAS  Google Scholar 

  • Wang, S., Zheng, W., Ren, J. & Zhang, C. 2002. Selectivity of various types of salt-resistant plants for K+ over Na+. Journal of Arid Environment 52: 457– 472.

    Article  Google Scholar 

  • Wang, S., Wan, C., Wang, Y., Chen, H., Zhou, Z., Fu, H. & Sosebee, R.E. 2004. The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environment 56: 525–539.

    Article  Google Scholar 

  • Yeo, A. 1998. Molecular biology of salt tolerance in the context of whole-plant physiology. Journal of Experimental Botany 49: 915–929.

    Article  CAS  Google Scholar 

  • Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M. & Pardo, J.M. 2002. ifferential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in salt stress response. lant Journal 30: 529–539.

    CAS  Google Scholar 

  • Zhu, J.K. 2001. Plant salt tolerance. Trends in Plant Science 6: 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247–273.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6: 441–445.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ajmal Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Gulzar, S., Khan, M.A. (2008). Comparative Salt Tolerance Of Perennial Grasses. In: Khan, M.A., Weber, D.J. (eds) Ecophysiology of High Salinity Tolerant Plants. Tasks for Vegetation Science, vol 40. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4018-0_17

Download citation

Publish with us

Policies and ethics