Using Genomics to Study Evolutionary Origins of See ds

  • Eric D. Brenner
  • Dennis Stevenson
Part of the Managing Forest Ecosystems book series (MAFE, volume 9)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  1. The Selaginella moellendorffii genome sequencing project2005 http://www.jgi.doe.gov/sequencing/why/CSP2005/selaginella.html.
  2. ANGENENT, G. C., AND L. COLOMBO, 1996 Molecular control of ovule development. Trends in Plant Science 1: 228-232.Google Scholar
  3. BARTON, M., 2001 Leaving the meristem behind: regulation of KNOX genes. Genome Biol2: Reviews1002.Google Scholar
  4. BECKER, A., M. BEY, T. R. BURGLIN, H. SAEDLER and G. THEISSEN, 2002 Ancestry and diversity of BEL1-like homeobox genes revealed by gymnosperm (Gnetum gnemon) homologs. Dev Genes Evol 212: 452-457.CrossRefPubMedGoogle Scholar
  5. BECKER, A., H. SAEDLER and G. THEISSEN, 2003 Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol 213: 567-572.CrossRefPubMedGoogle Scholar
  6. BECKER, A., K. U. WINTER, B. MEYER, H. SAEDLER and G. THEISSEN, 2000 MADS-Box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17: 1425-1434.PubMedGoogle Scholar
  7. BELLAOUI, M., M. S. PIDKOWICH, A. SAMACH, K. KUSHALAPPA, S. E. KOHALMI et al., 2001 The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 13: 2455-2470.CrossRefPubMedGoogle Scholar
  8. BHARATHAN, G., T. E. GOLIBER, C. MOORE, S. KESSLER, T. PHAM et al., 2002 Homologies in leaf form inferred from KNOXI gene expression during development. Science 296: 1858-1860.CrossRefPubMedGoogle Scholar
  9. BHARATHAN, G., B. J. JANSSEN, E. A. KELLOGG and N. SINHA, 1997 Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa? Proc Natl Acad Sci USA 94: 13749-13753.CrossRefPubMedGoogle Scholar
  10. BHARATHAN, G., and N. R. SINHA, 2001 The regulation of compound leaf development. Plant Physiol 127: 1533-1538.CrossRefPubMedGoogle Scholar
  11. BIERHORST, D. W., 1971 Morphology of Vascular Plants. Macmillan.Google Scholar
  12. BOWE, L. M., G. COAT and C. W. DEPAMPHILIS, 2000 Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc Natl Acad Sci USA 97: 4092-4097.CrossRefPubMedGoogle Scholar
  13. BOWMAN, J. L., and D. R. SMYTH, 1999 CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126: 2387-2396.PubMedGoogle Scholar
  14. BOWMAN, J. L., D. R. SMYTH and E. M. MEYEROWITZ, 1991 Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1-20.PubMedGoogle Scholar
  15. BRENNER, E. D., D. W. STEVENSON, R. W. MCCOMBIE, M. S. KATARI, S. A. RUDD et al., 2003a Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol 4: R78.CrossRefGoogle Scholar
  16. BRENNER, E. D., D. W. STEVENSON and R. W. TWIGG, 2003b Cycads: evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci 8: 446-452.CrossRefGoogle Scholar
  17. BYRNE, M., M. TIMMERMANS, C. KIDNER and R. MARTIENSSEN, 2001 Development of leaf shape. Curr Opin Plant Biol 4: 38-43.CrossRefPubMedGoogle Scholar
  18. CARLSBECKER, A., J. SUNDSTROM, K. TANDRE, M. ENGLUND, A. KVARNHEDEN et al., 2003 The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones. Evol Dev 5: 551-561.CrossRefPubMedGoogle Scholar
  19. CARMICHAEL, J. S., and W. E. FRIEDMAN, 1995 Double Fertilization in Gnetum gnemon: The Relationship between the Cell Cycle and Sexual Reproduction. Plant Cell 7: 1975-1988.CrossRefPubMedGoogle Scholar
  20. CHAMBERLAIN, C. J., 1935 Gymnosperms. Structure and Evolution. University of Chicaco Press, Chicago.Google Scholar
  21. CHAN, R. L., G. M. GAGO, C. M. PALENA and D. H. GONZALEZ, 1998 Homeoboxes in plant development. Biochim. Biophys. Acta. 1442: 1-19.PubMedGoogle Scholar
  22. CHAW, S. M., C. L. PARKINSON, Y. CHENG, T. M. VINCENT and J. D. PALMER, 2000 Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97: 4086-4091.CrossRefPubMedGoogle Scholar
  23. COEN, E. S., and E. M. MEYEROWITZ, 1991 The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.CrossRefPubMedGoogle Scholar
  24. COEN, E. S., J. M. ROMERO, S. DOYLE, R. ELLIOTT, G. MURPHY et al., 1990 FLORICAULA: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311-1322.CrossRefPubMedGoogle Scholar
  25. CRANE, P. R., 1985 Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of Missouri Botanical Gardens 72: 716-793.CrossRefGoogle Scholar
  26. DONOGHUE, M. J., and J. A. DOYLE, 2000 Seed plant phylogeny: Demise of the anthophyte hypothesis? Curr Biol 10: R106-109.CrossRefPubMedGoogle Scholar
  27. DOYLE, J. A., 1998 Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Mol Phylogenet Evol 9: 448-462.CrossRefPubMedGoogle Scholar
  28. DOYLE, J. A., and M. J. DONOGHUE, 1986 Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Reviews 52: 321-431.CrossRefGoogle Scholar
  29. ELLIOTT, R. C., A. S. BETZNER, E. HUTTNER, M. P. OAKES, W. Q. TUCKER et al., 1996 AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8: 155-168.CrossRefPubMedGoogle Scholar
  30. ESHED, Y., S. F. BAUM and J. L. BOWMAN, 1999 Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99: 199-209.CrossRefPubMedGoogle Scholar
  31. ESHED, Y., S. F. BAUM, J. V. PEREA and J. L. BOWMAN, 2001 Establishment of polarity in lateral organs of plants. Current Biology 11: 1251-1260.CrossRefPubMedGoogle Scholar
  32. FAVARO, R., A. PINYOPICH, R. BATTAGLIA, M. KOOIKER, L. BORGHI et al., 2003 MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15: 2603-2611.CrossRefPubMedGoogle Scholar
  33. FOSTER, A. S., and E. M. GIFFORD, 1974 Comparative Morphology of Vascular Plants. W. H. Freeman and Company, San Francisco.Google Scholar
  34. FRIEDMAN, W., 1987 Morphogenesis and experimental aspects of growth and development of the male gametophyte of Ginkgo biloba in vitro. American Journal of Botany 74: 1816-1830.CrossRefGoogle Scholar
  35. FROHLICH, M. W., and D. S. PARKER, 2000 The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany 25: 155-170.CrossRefGoogle Scholar
  36. FUKUI, M., N. FUTAMURA, Y. MUKAI, Y. WANG, A. NAGAO et al., 2001 Ancestral MADS box genes in Sugi, Cryptomeria japonica D. Don (Taxodiaceae), homologous to the B function genes in angiosperms. Plant Cell Physiol 42: 566-575.CrossRefPubMedGoogle Scholar
  37. GAO, Z., and B. A. THOMAS, 1989 A review of fossil cycad megasporophylls, with new evidence of Crossozamia pomel and its associated leaves from the lower Permian of Taiyuan, China. Review of Palaeobotany and Palynology 60: 205-223.CrossRefGoogle Scholar
  38. GENOME, BRITISH, COLUMBIA, FORESTRY, GENOMICS et al., 2005 http://www.treenomix.com/cDNA-sequencing/default.aspx.
  39. GOREMYKIN, V., V. BOBROVA, J. PAHNKE, A. TROITSKY, A. ANTONOV et al., 1996 Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Mol Biol Evol 13: 383-396.PubMedGoogle Scholar
  40. GOTO, K., J. KYOZUKA and J. L. BOWMAN, 2001 Turning floral organs into leaves, leaves into floral organs. Curr Opin Genet Dev 11: 449-456.CrossRefPubMedGoogle Scholar
  41. GOURLAY, C. W., J. M. HOFER and T. H. ELLIS, 2000 Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA, and TENDRIL-LESS. Plant Cell 12: 1279-1294.CrossRefPubMedGoogle Scholar
  42. GROSSHARDT, R., M. LENHARD and T. LAUX, 2002 WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16: 1129-1138.CrossRefGoogle Scholar
  43. GUILLETCLAUDE, C., N. ISABEL, B. PELGAS and J. BOUSQUET, 2004 The Evolutionary Implications of knox-I Gene Duplications in Conifers: Correlated Evidence from Phylogeny, Gene Mapping, and Analysis of Functional Divergence. Mol Biol Evol 21: 2232-2245.CrossRefGoogle Scholar
  44. HARA, N., 1997 Morphology and anatomy of vegetative organs in Ginkgo biloba, pp. 3-15 in Ginkgo biloba-a Global Treasure, edited by T. HORI, R. W. RIDGE, W. TULECKE, P. DEL TREDICI, J. TRÉMOUILLAUX-GUILLER et al., Springer-Verlag, Tokyo.Google Scholar
  45. HASEBE, M., C. K. WEN, M. KATO and J. A. BANKS, 1998 Characterization of MADS homeotic genes in the fern Ceratopteris richardii. Proc Natl Acad Sci U S A 95: 6222-6227.CrossRefPubMedGoogle Scholar
  46. HIMI, S., R. SANO, T. NISHIYAMA, T. TANAHASHI, M. KATO et al., 2001 Evolution of MADS-box gene induction by FLO/LFY genes. J Mol Evol 53: 387-393.CrossRefPubMedGoogle Scholar
  47. HJORTSWANG, H. I., L. A. SUNDÅS, G. BHARATHAN, P. BOZHKOV, S. VON ARNOLD et al., 2002 KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiol Biochem 40: 837-843.CrossRefGoogle Scholar
  48. IKENO, S., and S. HIRASE, 1897 Spermatozoids in gymnosperms. Ann. of Bot. 11: 344-345.Google Scholar
  49. ISHIDA, T., M. AIDA, S. TAKADA and M. TASAKA, 2000 Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol 41: 60-67.PubMedGoogle Scholar
  50. JAGER, M., A. HASSANIN, M. MANUEL, H. L. GUYADER and J. DEUTSCH, 2003 MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS Family. Mol Biol Evol 20: 842-854.CrossRefPubMedGoogle Scholar
  51. KIRST, M., A. F. JOHNSON, C. BAUCOM, E. ULRICH, K. HUBBARD et al., 2003 Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci U S A 100: 7383-7388.CrossRefPubMedGoogle Scholar
  52. KRIZEK, B. A., and E. M. MEYEROWITZ, 1996 The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122: 11-22.PubMedGoogle Scholar
  53. LEITCH, I. J., L. HANSON, M. WINFIELD, J. PARKER and M. D. BENNETT, 2001 Nuclear DNA C-values complete familial representation in gymnosperms. Ann Bot 88: 843-849.CrossRefGoogle Scholar
  54. LEITCH, I. J., D. E. SOLTIS, P. S. SOLTIS and M. D. BENNETT, 2005 Evolution of DNA amounts across land plants (embryophyta). Ann Bot (Lond) 95: 207-217.CrossRefGoogle Scholar
  55. LIU, Z., R. G. FRANKS and V. P. KLINK, 2000 Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12: 1879-1892.CrossRefPubMedGoogle Scholar
  56. MAGOLLÓN, S., and M. J. SANDERSON, 2002 Relationships among seed plants inferred from highly conserved genes: sorting confilicting phylogenetic signals among ancient lineages. Am. J. Bot. 89: 1991-2006.CrossRefGoogle Scholar
  57. MAMAY, S. H., 1969 Cycads: fossil evidence of late paleozoic origin. Science 164: 295-296.CrossRefPubMedGoogle Scholar
  58. MEEUSE, A. D. J., 1966 Fundamentals of Phytomorphology. The Ronold Press Co., New York.Google Scholar
  59. MEISTER, R. J., L. M. KOTOW and C. S. GASSER, 2002 SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development 129: 4281-4289.PubMedGoogle Scholar
  60. MEISTER, R. J., L. A. WILLIAMS, M. M. MONFARED, T. L. GALLAGHER, E. A. KRAFT et al., 2004 Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J 37: 426-438.CrossRefPubMedGoogle Scholar
  61. MELLEROWICZ, E. J., K. HORGAN, A. WALDEN, A. COKER and C. WALTER, 1998 PRFLL-a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta 206: 619-629.CrossRefPubMedGoogle Scholar
  62. MOURADOV, A., T. GLASSICK, B. HAMDORF, L. MURPHY, B. FOWLER et al., 1998 NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA 95: 6537-6542.CrossRefPubMedGoogle Scholar
  63. MOURADOV, A., B. HAMDORF, R. D. TEASDALE, J. T. KIM, K. U. WINTER et al., 1999 A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev Genet 25: 245-252.CrossRefPubMedGoogle Scholar
  64. MUNDRY, I., 2000 Morphologische und morphogenetische Untersuchungen zur Evolution der Gymnospermen, E. Schweizbart’sche Verlagsbuchhandlung. Nקgele u. Obermiller.Google Scholar
  65. MUNSTER, T., J. PAHNKE, A. DI ROSA, J. T. KIM, W. MARTIN et al., 1997 Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA 94: 2415-2420.CrossRefPubMedGoogle Scholar
  66. NG, M., and M. F. YANOFSKY, 2001 Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2: 186-195.CrossRefPubMedGoogle Scholar
  67. NIXON, K., W. CREPET, D. W. STEVENSON and E. FRIIS, 1994 A reevaluation of seed plant phylogeny. Annals of the Missouri Botanical Garden 81: 484-583.CrossRefGoogle Scholar
  68. NORSTOG, K. J., and T. J. NICHOLLS, 1997 The Biology of the Cycads. Cornell University Press, Ithaca, N.Y.Google Scholar
  69. PINYOPICH, A., G. S. DITTA, B. SAVIDGE, S. J. LILJEGREN, E. BAUMANN et al., 2003 Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85-88.CrossRefPubMedGoogle Scholar
  70. PRYER, K. M., H. SCHNEIDER, A. R. SMITH, R. CRANFILL, P. G. WOLF et al., 2001 Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409: 618-622.CrossRefPubMedGoogle Scholar
  71. PURUGGANAN, M. D., 1997 The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J Mol Evol 45: 392-396.CrossRefPubMedGoogle Scholar
  72. PURUGGANAN, M. D., S. D. ROUNSLEY, R. J. SCHMIDT and M. F. YANOFSKY, 1995 Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics 140: 345-356.PubMedGoogle Scholar
  73. REISER, L., Z. MODRUSAN, L. MARGOSSIAN, A. SAMACH, N. OHAD et al., 1995 The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83: 735-742.CrossRefPubMedGoogle Scholar
  74. ROBINSONBEERS, K., R. E. PRUITT and C. S. GASSER, 1992 Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4: 1237-1249.CrossRefGoogle Scholar
  75. ROKAS, A., B. L. WILLIAMS, N. KING and S. B. CARROLL, 2003 Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804.CrossRefPubMedGoogle Scholar
  76. ROTHWELL, G. W., 1988 Cordaitales in Origin and Evolution of Gymnosperms, edited by C. B. Beck Columbia University Press, New York.Google Scholar
  77. ROTHWELL, G. W., and S. E. SCHECKLER, 1988 Biology of Ancestral Gymnosperms in Origin and Evolution of Gymnosperms, Edited by C. B. Beck. Columbia University Press, New York.Google Scholar
  78. RUDD, S., 2003 Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8: 321-329.CrossRefPubMedGoogle Scholar
  79. RUTLEDGE, R., S. REGAN, O. NICOLAS, P. FOBERT, C. COTE et al., 1998 Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J 15: 625-634.CrossRefPubMedGoogle Scholar
  80. RYDIN, C., M. KALLERSJO and E. M. FRIIS, 2002 Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems and the monophyly of conifers. Int. J. Plant Sci. 163: 197-214.CrossRefGoogle Scholar
  81. SAVARD, L., P. LI, S. H. STRAUSS, M. W. CHASE, M. MICHAUD et al., 1994 Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc Natl Acad Sci USA 91: 5163-5167.CrossRefPubMedGoogle Scholar
  82. SCHIEFTHALER, U., S. BALASUBRAMANIAN, P. SIEBER, D. CHEVALIER, E. WISMAN et al., 1999 Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96: 11664-11669.CrossRefPubMedGoogle Scholar
  83. SCHWARZ-SOMER, Z., P. HUIJSER, W. NACKEN, H. SAEDLER and H. SOMMER, 1990 Genetic control of flower development: homeotic genes in Antirrhinum majus. Science 250.Google Scholar
  84. SHIGYO, M., and M. ITO, 2004 Analysis of gymnosperm two-AP2-domain-containing genes. Dev Genes Evol 214: 105-114.CrossRefPubMedGoogle Scholar
  85. SHINDO, S., K. SAKAKIBARA, R. SANO, K. UEDA and M. HASEBE, 2001 Characterization of a FLORICAUL/LEAFY homologue of Gnetum parvifolium and its implications for the evolution of reproductive organs in seed plants. International Journal of Plant Science 162: 1199-1209.CrossRefGoogle Scholar
  86. SKINNER, D. J., T. A. HILL and C. S. GASSER, 2004 Regulation of ovule development. Plant Cell 16 Suppl: 32-45.CrossRefGoogle Scholar
  87. SOLTIS, D. E., P. S. SOLTIS and M. J. ZANIS, 2002a Phylogeny of seed plants based on evidence from eight genes. Am. J. Bot. 89: 1670-1681.CrossRefGoogle Scholar
  88. SOLTIS, P. S., D. E. SOLTIS, V. SAVOLAINEN, P. R. CRANE and T. G. BARRACLOUGH, 2002b Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci U S A 99: 4430-4435.CrossRefGoogle Scholar
  89. STEWART, W. N., and G. W. ROTHWELL, 1983 Paleobotany and the Evolution of Plants. Cambridge University Press, Cambridge.Google Scholar
  90. SUNDASLARSSON, A., M. SVENSON, H. LIAO and P. ENGSTROM, 1998 A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Proc Natl Acad Sci U S A 95: 15118-15122.CrossRefGoogle Scholar
  91. SUNDSTROM, J., and P. ENGSTROM, 2002 Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia. Plant J 31: 161-169.CrossRefPubMedGoogle Scholar
  92. TAKADA, S., and M. TASAKA, 2002 Embryonic shoot apical meristem formation in higher plants. J Plant Res 115: 411-417.CrossRefPubMedGoogle Scholar
  93. TAKASO, T., 1984 Structural-Changes in the Apex of the Female Strobilus and the initiation of the female reproductive organ (ovule) in Ephedra-Distachya L and Ephedra-Equisetina Bge. Acta Botanica Neerlandica 33: 257-266.Google Scholar
  94. TAKASO, T., F. Bouman, 1986 Ovule and seed ontogeny in Gnetum gnemon L. Botanical Magazine Tokyo 99: 241-266.CrossRefGoogle Scholar
  95. TANDRE, K., V. A. ALBERT, A. SUNDAS and P. ENGSTROM, 1995 Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol 27: 69-78.CrossRefPubMedGoogle Scholar
  96. TANDRE, K., M. SVENSON, M. E. SVENSSON and P. ENGSTROM, 1998 Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J 15: 615-623.CrossRefPubMedGoogle Scholar
  97. TAYLOR, T. N., and E. L. TAYLOR, 1993 The Biology and Evolution of Fossil Plants. Prentice Hall.Google Scholar
  98. THEISSEN, G., A. BECKER, A. DI ROSA, A. KANNO, J. T. KIM et al., 2000 A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149.CrossRefPubMedGoogle Scholar
  99. THEISSEN, G., J. T. KIM and H. SAEDLER, 1996 Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43: 484-516.CrossRefPubMedGoogle Scholar
  100. UJINOIHARA, T., K. YOSHIMURA, Y. UGAWA, H. YOSHIMARU, K. NAGASAKA et al., 2000 Expression analysis of ESTs derived from the inner bark of Cryptomeria japonica. Plant Mol Biol 43: 451-457.CrossRefGoogle Scholar
  101. VAHALA, T., B. OXELMAN and S. VON ARNOLD, 2001 Two APETAL2-like genes from Picea abies are differentially expressed during development. Journal of Experimental Botany 52: 1111-1115.CrossRefPubMedGoogle Scholar
  102. VILLANUEVA, J. M., J. BROADHVEST, B. A. HAUSER, R. J. MEISTER, K. SCHNEITZ et al., 1999 INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes Dev 13: 3160-3169.CrossRefPubMedGoogle Scholar
  103. WEIGEL, D., J. ALVAREZ, D. R. SMYTH, M. F. YANOFSKY and E. M. MEYEROWITZ, 1992 LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.CrossRefPubMedGoogle Scholar
  104. WHETTEN, R., Y. H. SUN, Y. ZHANG and R. SEDEROFF, 2001 Functional genomics and cell wall biosynthesis in loblolly pine. Plant. Mol. Biol. 47: 275-291.CrossRefPubMedGoogle Scholar
  105. WINTER, K. U., A. BECKER, T. MUNSTER, J. T. KIM, H. SAEDLER et al., 1999 MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci USA 96: 7342-7347.CrossRefPubMedGoogle Scholar
  106. WINTER, K. U., H. SAEDLER and G. THEISSEN, 2002 On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Plant J 31: 457-475.CrossRefPubMedGoogle Scholar
  107. ZHANG, P., H. T. TAN, K. H. PWEE and P. P. KUMAR, 2004 Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J. 37: 566-577.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Eric D. Brenner
    • 1
  • Dennis Stevenson
    • 2
  1. 1.New York Botanical GardenBronxUSA
  2. 2.New York Botanical Garden BronxUSA

Personalised recommendations