Taylor-Vortex Bioreactors for Enhanced Mass Transport

  • S.J. Curran
  • R.A. Black


Couette Flow Sherwood Number Vortex Flow Outer Cylinder Taylor Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Reesh I, Kargi F. 1989. Biological responses of hybridoma cells to defined hydrodynamic shear stress. J Biotechnol 9:167–178.CrossRefGoogle Scholar
  2. Andereck CD, Liu SS, Swinney HL. 1986. Flow regimes in a circular couette system with independently rotating cylinders. J Fluid Mech 164:155–183.CrossRefGoogle Scholar
  3. Bailey JE, Ollis DF. 1986. Biochemical Engineering Fundamentals. 2nd Edition. McGraw-Hill Inc. New York.Google Scholar
  4. Begley CM, Kleis SJ. 2000. The fluid dynamic and shear environment in the NASA/JSC rotating-wall-perfused vessel bioreactor. Biotech Bioeng 70:32–40.CrossRefGoogle Scholar
  5. Blennerhassett PJ, Hall P. 1979. Centrifugal instabilities of circumferential flows in finite cylinders: linear theory. Proc Roy Soc London A 365:191–207.Google Scholar
  6. Born C, Zhang Z, Al-Rubeai M, Thomas CR. 1992. Estimation of disruption of animal cells by laminar shear stress.. Biotech Bioeng 40:1004–1010.CrossRefGoogle Scholar
  7. Brown TD. 2000. Techniques for mechanical stimulation of cells in vitro: A Review. J Biomech 33:3–14CrossRefPubMedGoogle Scholar
  8. Burkhalter JE, Koschmeider EL. 1974. Steady supercritical taylor vorticesafter sudden starts. Phys Fluids 17:1929–1935.CrossRefGoogle Scholar
  9. Butler M. 1988. A comparative review of microcarriers available for the growth of anchorage-dependent animal cells. Animal Cell Biotechnology 3:283–303.Google Scholar
  10. Campero RJ, Vigil RD. 1997. Axial dispersion during low-reynolds number taylor-couette flow: intravortex mixing effects. Chem Eng Sci 52:3303–3310.CrossRefGoogle Scholar
  11. Chandrasekhar S. 1961. Hydrodynamic and Hydromagnetic Instability. Clarendon Press, Oxford.Google Scholar
  12. Chen SY, Huang SY. 2000. Shear stress effects on cell growth and l-dopa production by suspension culture of Stizolobium hassjoo cells in an agitated bioreactor. Bioproc Eng 22:5–12.CrossRefGoogle Scholar
  13. Cherry RS, Papoutsakis ET. 1986. Hydrodynamic effects on cells in agitated tissue culture reactors. Bioproc Eng 1:29–41.CrossRefGoogle Scholar
  14. Cherry RS,, Papoutsakis ET. 1988. Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotech Bioeng 32:1001–1014.CrossRefGoogle Scholar
  15. Cole JA. 1976. Taylor-vortex instability and annulus length effects. J Fluid Mech 75:1–15.CrossRefGoogle Scholar
  16. Coles D. 1965. Transition in circular couette flow. J Fluid Mech 21:385–425CrossRefGoogle Scholar
  17. Coulson JM, Richardson JF, Backhurst JR, Harker JH. 1991. Chemical Engineering Vol 1. 4th Edition, Pergamon Press, Oxford.Google Scholar
  18. Croughan MS, Hamel JF, Wang DIC. 1987. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotech Bioeng 29:130–141.CrossRefGoogle Scholar
  19. Croughan MS, Sayre ES, Wang DIC. 1989. Viscous reduction of turbulent damage in animal cell culture. Biotech. Bioeng. 33:862–872.CrossRefGoogle Scholar
  20. Curran SJ, Black RA. 2000. Mass transport and hydrodynamic modelling for an annular flow bioreactor. ASME BED Advances in Bioengineering 51.Google Scholar
  21. Curran SJ. 2002. Hydrodynamics and Mass Transport in an Annular Flow Bioreactor. PhD Thesis University of Liverpool, UK.Google Scholar
  22. Debler W, Fuhner E, Schaaf B. 1969. Torque and flow patterns in supercritical taylor-vortex flow. In 12th Int. Congr. Appl. Mech. Springer, Berlin, 158–178.Google Scholar
  23. Desmet G, Verelst H, Baron GV. 1996. Local and global dispersion effects in Couette-Taylor flow [I]: Decription and modelling of the dispersion effects. Chem. Eng. Sci. 51:1287–1298.CrossRefGoogle Scholar
  24. Desmet G, Verelst H, Baron GV. 1996. Local and global dispersion effects in Couette-Taylor flow [II]: Quantitative measurements and discussion of the reactor performance. Chem Eng Sci 51:1299–1309.CrossRefGoogle Scholar
  25. Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. 1981. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185.PubMedCrossRefGoogle Scholar
  26. Dong C, Lei XX. 2000. Biomechanics of cell rolling: shear flow, cell surface adhesion and cell deformability. J Biomech 33:35–43.CrossRefPubMedGoogle Scholar
  27. Drazin PG, Reid WH. 1981. Hydrodynamic Stability. Cambridge University Press.Google Scholar
  28. Edwards WS, Beane SR, Varma S. 1991. Onset of wavy-vortices in the finite length Taylor-Couette problem. Phys Fluids A 3:1510–1518.CrossRefGoogle Scholar
  29. Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O’Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Tragardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A. 2001. Physiological responses to mixing in large scale bioreactors. J Biotechnol 85:175–185CrossRefPubMedGoogle Scholar
  30. Frangos JA, McIntire LV, Eskin SG. 1988. Shear stress induced stimulation of mammalian cell metabolism. Biotech Bioeng 32:1053–1061.CrossRefGoogle Scholar
  31. Freed LE, Hollander AP, Martin I, Barry JR, Langer R, Vunjak-Novakovic G. 1998. Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240:58–65.CrossRefPubMedGoogle Scholar
  32. Fry DL. 1968. Acute vascular endothelial changes associated with increased blood velocity. Circ Res 22: 165–197.PubMedGoogle Scholar
  33. Goodwin T, Jessup J, Wolf D. 1992. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating wall vessels. In Vitro Cell Dev Biol 28A: 47–60.Google Scholar
  34. Hall P. 1980. Centrifugal instabilities of circumferential flows in finite cylinders: non-linear theory. Proc Roy Soc London A 372:317–356.Google Scholar
  35. Hammond TG, Hammond JM. 2001. Optimised suspension culture: the rotating wall vessel. Am J Physiol Renal Physiol 281:F12–F25.PubMedGoogle Scholar
  36. Haut B, Ben Amor H, Coulon L, Jacquet A, Halloin V. 2003. Hydrodynamics and mass transfer in a Couette-Taylor bioreactor for the culture of animal cells. Chem Eng Sci 58:777–784.CrossRefGoogle Scholar
  37. Howes T, Rudman M. 1998. Flow and axial dispersion simulation for traveling axisymmetric Taylor vortices. AIChE J 44:255–262.CrossRefGoogle Scholar
  38. Hu WS, Peshwa MV. 1991. Animal cell bioreactors: recent advances and challenges to scale-up. Can J Chem Eng 69:409–420.CrossRefGoogle Scholar
  39. Hua J, Erickson LE, Yiin TY, Glasgow LA. 1993. A review of the effects of shear and interfacial phenomena on cell viability. Critical Rev Biotech 13:305–328.Google Scholar
  40. Inamura T, Saito K, Ishikura S. 1993. A new approach to continuous emulsion polymerization. Polym Int 30:203–206.Google Scholar
  41. Kallos MS, Behie LA. 1999. Inoculation and growth conditions for high density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnol Bioeng 63:473–483.CrossRefPubMedGoogle Scholar
  42. Kataoka K, Doi H, Hongo, T, Futagawa M. 1975. Ideal plug flow properties of Taylor vortex flow. J Chem Eng Jap 8:472–476.Google Scholar
  43. Kataoka K, Doi H, Komai T. 1977. Heat and mass transfer in Taylor vortex flow with constant axial flowrates. Int J Heat Mass Transfer 20:57–63.CrossRefGoogle Scholar
  44. Kataoka K, Takigawa T. 1981. Intermixing over cell boundary between Taylor vortices. AIChE J 27: 504–508.CrossRefGoogle Scholar
  45. Koschmeider EL. 1979. Turbulent Taylor-vortex flow. J Fluid Mech 93:515–527.CrossRefGoogle Scholar
  46. Lakhotia S, Papoutsakis ET. 1992. Agitation induced cell injury in microcarrier cultures. Protective effect of viscosity is agitation intensity dependent: experiments and modelling. Biotech Bioeng 39:95–107.CrossRefGoogle Scholar
  47. Langer R, Vacanti J. 1993. Tissue engineering. Science 260:920–926.PubMedGoogle Scholar
  48. Lee SHK, Sengupta S, Wei T. 1995. Effect of polymer additives on Gortler vortices in Taylor-Couette Flow. J Fluid Mech 282:115–129.CrossRefGoogle Scholar
  49. Legrand J, Coeuret F. 1986. Circumferential mixing in one-phase and two-phase Taylor vortex flows. Chem Eng Sci 41:47–53.CrossRefGoogle Scholar
  50. Leib TM, Pereira CJ, Villadsen J. 2001. Bioreactors: a chemical engineering perspective. Chem Eng Sci 56:5485–5497.CrossRefGoogle Scholar
  51. Levenspiel O. 1972. Chemical Reaction Engineering. 2nd Edition, Wiley Publications, New York, pp 253–314.Google Scholar
  52. Levesque MJ, Nerem RM. 1985. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347.PubMedCrossRefGoogle Scholar
  53. Lewis JW. 1928. Observed structures in rotating cylinder flows. Proc Roy Soc A London 117:388–406.Google Scholar
  54. Lewis R. 1995. Tissue engineering now coming into its own as a scientific field. The Scientist 9: 12–15.Google Scholar
  55. Liu CI, Lee DJ. 1999. Micromixing effects in a Couette flow reactor. Chem Eng Sci 54:2883–2888.CrossRefGoogle Scholar
  56. Lorenzen A, Pfister G, Mullin T. 1983. End-effects on the transition to time-dependent motion in the Taylor experiment. Phys Fluids 26:10–13.CrossRefGoogle Scholar
  57. Ludwig A, Kretzmer G, Schugerl K. 1992. Determination of a “critical shear stress level” applied to adherent mammalian cells. Enz Microb Technol 14:209–213.CrossRefGoogle Scholar
  58. Mardikhar SH, Niranjan K. 2000. Observations on the shear damage to different animal cells in a concentric cylinder viscometer. Biotechnol. Bioeng. 68:697–704.CrossRefGoogle Scholar
  59. McQueen A, Meilhoc E, Bailey J. 1987. Flow effects on the viability and lysis of suspended animal cells. Biotechnol Lett 9:831–839.CrossRefGoogle Scholar
  60. Michaels JD, Kunas KT, Papoutsakis ET. 1992. Fluid mechanical damage of freely suspended animal cells in agitated bioreactors: effects of dextran, derivatized celluloses and polyvinyl alcohol. Chem Eng Commun 118: 341–360.Google Scholar
  61. Mobbs FR, Ozogan MS. 1984. Study of sub-critical Taylor-vortex flow between eccentric rotating cylinders by torque measurements and visual observations. Int J Heat & Fluid Flow 5:251–253.CrossRefGoogle Scholar
  62. Mullin T. 1982. Mutations of steady cellular flows in the Taylor experiment. J Fluid Mech 121: 207–218.CrossRefGoogle Scholar
  63. Naughton G. 1998. Tissue engineering-new challenges. ASAIO J 115–116.Google Scholar
  64. Nollert MU, Diamond SL, McIntire LV. 1991. Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism. Biotech Bioeng 38: 588–602.CrossRefGoogle Scholar
  65. Obradovic B, Carrier RL, Vunjak-Novakovic G, Freed LE. 1999. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotech Bioeng 63:197–205.CrossRefGoogle Scholar
  66. Ogihara T, Matsuda G, Yanagawa T, Ogata N, Fujita K, Nomura M. 1995. Continuous synthesis of monodispersed silica particles using Couette-Taylor vortex flow. J Soc Ceram Jpn Int Ed 103:151–154.Google Scholar
  67. Ohmura N, Kataoka K, Shibata Y, Makino T. 1997. Effective mass diffusion over cell boundaries in a Taylor-Couette flow system. Chem Eng Sci 52:1757–1765.CrossRefGoogle Scholar
  68. Papadaki M, McIntire LV, Eskin SG. 1996. Effects of shear stress on the growth of aortic smooth muscle cells in vitro. Biotech Bioeng 50:555–561.CrossRefGoogle Scholar
  69. Papoutsakis ET. 1991. Fluid-mechanical damage of animal cells in bioreactors. Trends in Biotech 9: 427–437.CrossRefGoogle Scholar
  70. Park K, Donnelly RJ. 1981. Study of the transition to Taylor-vortex flow. Phys Rev A 24:2277–2279.CrossRefGoogle Scholar
  71. Petersen JF, McIntire LV, Papoutsakis ET. 1988. Shear sensitivity of cultured hybridoma cells CRL-8018 depends on mode of growth, culture age and metabolite concentration. J Biotechnol 7:229–246.CrossRefGoogle Scholar
  72. Rhodes NP, Shortland AP, Rattray A, Black RA, Williams DF. 1997. Activation status of platelet aggregates and platelet microparticles shed in sheared blood. J Mat Sci Mat Med 8:747–751.CrossRefGoogle Scholar
  73. Roberts PH. 1965. The solution of the characteristic value problems. Proc Roy Soc London A 283: 550–556.Google Scholar
  74. Rudman M, Thompson MC, Hourigan K. 1994. Particle shear rate history in a Taylor-Couette column. ASME Fluids Eng Div FED 189:23–30.Google Scholar
  75. Rudolph M, Shinbrot T, Lueptow RM. 1998. A model of mixing and transport in wavy Taylor-Couette flow. Physica D 121:163–174.CrossRefGoogle Scholar
  76. Ryrie S. 1992. Mixing by chaotic advection in a class of spatially periodic flows. J Fluid Mech 236: 1–19.CrossRefGoogle Scholar
  77. Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K. 2000. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J Biomech 33:127–135.CrossRefPubMedGoogle Scholar
  78. Savas O. 1985. On flow visualization using reflective flakes. J Fluid Mech 152:235–248.CrossRefGoogle Scholar
  79. Schugerl K, Kretzmer G (editors). 2000. Influence Of Stress On Cell Growth And Product Formation. Adv Biochem Eng Biotechnol vol 67. Springer.Google Scholar
  80. Schlichting H. 1987. Boundary Layer Theory. New York: McGraw-Hill Inc. 7th Edition.Google Scholar
  81. Schnittler HJ, Franke RP, Akbay U, Mrowietz C, Drenckhahn D. 1993. Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am J Physiol 265:C289–C298.PubMedGoogle Scholar
  82. Schultz-Grunow F, Hein H. 1956. Beitrag zur Couettestromung. Z Flugwiss 4:28–30.Google Scholar
  83. Sherman HS. 1991. Viscous Flow. New York: McGraw-Hill Inc.Google Scholar
  84. Snyder HA. 1969. Wave-number selection at finite amplitude in rotating Couette flow. J Fluid Mech 26: 545–562.CrossRefGoogle Scholar
  85. Spier RE. 1995. Gradients in animal and plant cell technology systems. Enz Microb Technol 17:91–92.CrossRefGoogle Scholar
  86. Stathopoulos NA, Hellums JD. 1985. Shear stress effects on human embryonic kidney cells in vitro. Biotech Bioeng 28:1021–1026.CrossRefGoogle Scholar
  87. Sugata S, Yoden S. 1991. Effects of centrifugal force on stability of axisymmetric viscous flow in a rotating annulus. J Fluid Mech 229:471–482.CrossRefGoogle Scholar
  88. Takhar HS, Ali MA, Soundalgekar VM. 1992. The effect of radial temperature gradient and axial magnetic field on the stability of Couette flow: the narrow gap problem. Int J Energy Res 16:597–621.Google Scholar
  89. Tam WY, Swinney HL. 1987. Mass transport in turbulent Couette-Taylor flow. Phys Rev A 36:1374–1381.CrossRefPubMedGoogle Scholar
  90. Taylor GI. 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil Trans Roy Soc London A 157:565–578.Google Scholar
  91. Temenoff JS, Mikos AG. 2000. Tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440.CrossRefPubMedGoogle Scholar
  92. Thomas CR. 1990. Problems of shear in biotechnology. In: Chemical Engineering Problems in Biotechnology. London: Elsevier.Google Scholar
  93. Thoumine O, Ziegler T, Girard PR, Nerem RM. 1995. Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structures. Exp Cell Res 29: 427–441.CrossRefGoogle Scholar
  94. Tramper J. 1995. Oxygen gradients in animal cell bioreactors. Cytotechnology 18:27–34.CrossRefGoogle Scholar
  95. Unsworth BR, Lelkes PI. 1998. Growing tissues in microgravity. Nature Medicine 4:901–907.CrossRefPubMedGoogle Scholar
  96. Vastano JA, Russo T, Swinney HL. 1990. Bifurcation to spatially induced chaos in a reaction-diffusion system. Physica D 46:23–42.CrossRefGoogle Scholar
  97. Vunjak-Novakovic G, Freed LE, Biron RJ, Langer R. 1996. Effects of mixing on the composition and morphology of tissue engineered cartilage. AIChE J 42:850–860.CrossRefGoogle Scholar
  98. Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE. 1998. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 14:193–202.CrossRefPubMedGoogle Scholar
  99. Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE. 1999. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue engineered cartilage. J Orthop Res 17:130–138.CrossRefPubMedGoogle Scholar
  100. White, FM. 1991. Viscous Fluid Flow. New York: McGraw Hill Inc.Google Scholar
  101. Williams KA, Saini S, Wick TM. 2002. Computational dynamics modelling of steady state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog 18:951–963.CrossRefPubMedGoogle Scholar
  102. Wu SC. 1999. Influence of hydrodynamic shear stress on microcarrier attached cell growth: cell line dependency and surfactant protection. Bioproc Eng 21:201–206.CrossRefGoogle Scholar
  103. Wu SC, Huang GYL. 2000. Hydrodynamic shear forces increase Japanese encephalitis virus production from microcarrier grown VERO cells. Bioproc. Eng. 23:229–233.CrossRefGoogle Scholar
  104. Yoshikawa N, Ariyoshi H, Ikeda M, Sakon M, Kawasaki T, Monden M. 1997. Shear stress causes polarized change in cytoplasmic calcium concentration in human umbilical vein endothelial cells. Cell Calcium 22:189–194.CrossRefPubMedGoogle Scholar
  105. Zhang S, Hand-Corrigan A, Spier RE. 1992. Oxygen transfer properties of bubbles in animal cell culture media. Biotech. Bioeng. 40:252–259.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • S.J. Curran
    • 1
  • R.A. Black
    • 1
  1. 1.UK Centre for Tissue EngineeringUniversity of LiverpoolLiverpoolUK

Personalised recommendations