Lotus japonicus’s a model system

  • Eloísa Pajuelo
  • Jens StougaardEmail author


Lotus japonicus was proposed as a model legume twelve years ago, because of a number of characteristics making this system very amenable for legume research. These characteristics include small plant, large and abundant flowers, easy hand pollination, high seed production, short generation time, easy cultivation, amenable to plant transformation and regeneration from tissue culture. At present, a set of genetic resources and tools has rapidly become available, including ecotypes, mutant lines, genetic maps, RIL lines, transformation procedures, EST sequences, and a whole genome-sequencing project. In these twelve years, research on L. japonicus has greatly contributed to the understanding of both symbiotic processes, i.e. with Rhizobium and mycorrhiza, making possible the cloning of several key genes involved in both symbioses. Now Lotus is regarded as one of the most useful plants for legume study and researchers who have interests in nodulation and other aspects of legume biology use it worldwide. In this introductory chapter we deal with the most general aspects and possibilities of the biology of L. japonicus, plant growth conditions, culture media, nitrogen supply and symbiotic partners; plant tissue culture; genetic transformation and regeneration of transgenic plants, contribution to the understanding of symbiotic processes and the role of this model plant for other research topics and exploiting microsynteny.


Model legume Lotus symbiosis ecotype microsynteny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arimura GI, Ozawa R, Kugimiya S, Takabayashi J, and Bohlmann J. (2004) Herbivore-Induced Defense Response in a Model Legume: Two-Spotted Spider Mites Induce Emission of (E)-ta-Ocimene and Transcript Accumulation of (E)-ta-Ocimene Synthase inLotus japonicus. Plant Physiology 135, 1976–1983.CrossRefPubMedGoogle Scholar
  2. Asamizu E, Nakamura Y, Sato S, Tabata S. (2004) Characteristic of the Lotus japonicus gen repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Molecular Biology 54, 504–514.CrossRefGoogle Scholar
  3. Asamizu E, Kato S, Sato S, Nakamura Y, Kaneko T, Tabata S. (2003) Structural analysis of a Lotus japonicus genome. IV. Sequence features and mapping of seventy-three TAC clones which cover the 7.5 Mb-regions of the genome. DNA Research 10, 115–122.CrossRefPubMedGoogle Scholar
  4. Asamizu E, Nakamura Y, Sato S, Tabata S. (2000) Generation of 7137 non redundant expressed sequencing tags from a legume,Lotus japonicus. DNA Research 7, 127–130.PubMedGoogle Scholar
  5. Banba M, Siddique AB, Kouchi H, Izui K, Hata S. (2001) Lotus japonicus forms early senescent root nodules withRhizobium etli. Molecular Plant-Microbe Interactions 14, 173–80.PubMedGoogle Scholar
  6. Bilyeu K, Beuselink P. (2001) Genes Controlling Pod Dehiscence inLotus japonicus. Meeting Abstract.Google Scholar
  7. Bonfante P, Genre A, Faccio A, Martini I, Schauser L, Stougaard J, Webb J, Parniske M. (2000) The Lotus japonicus Ljsym4 gene is required for the successful symbiotic interaction of root epidermal cells. Molecular Plant-Microbe Interactions, 13: 1109–1120.PubMedGoogle Scholar
  8. Borisov AY, Madsen LH, Tsyganov VE, Umerhara Y, Voroshilova VA, Batagov AO, Sandal N, Frederiksen A, Schauser L, Ellis N, et al. (2003) The sym35 gene required for root nodule development is an ortholog of Nin fromLotus japonicus. Plant Physiology 131, 1009–1017.CrossRefPubMedGoogle Scholar
  9. Broughton and Dilworth M. (1971) Control of leghemoglobin synthesis in snake beans. Biochemical Journal 125, 1075–1080.PubMedGoogle Scholar
  10. Colebatch G, Kloska S, Trevaski B, Freund S, Altmann J, Udvardi MK. (2002) Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Molecular Plant-Microbe Interactions 15, 411–420.PubMedGoogle Scholar
  11. Colebatch G, Debrosses G, Ott J, Krussell L, Montanari O, Kloska S, Kopka J, Udvardi MK. (2004). Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation. The Plant Journal, 39, 487–512.CrossRefPubMedGoogle Scholar
  12. Colliver SP, Robbins MP, Morris P. (1994) An ‘antisense’ strategy for the genetic manipulation of condensed tannin and isoflavonoid phytoalexin accumulation in transgenicLotus corniculatus L. Acta Horticulturae 381, 148–151.Google Scholar
  13. Cyranoski D. (2001) Japanese legume project may help to fix the nitrogen problem. Nature 409, 272.PubMedGoogle Scholar
  14. Downie JA, Parniske M. (2002) Fixation with regulation. Nature 420, 369–370.CrossRefPubMedGoogle Scholar
  15. Doyle JJ. (1998) Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends in Plant Science 3, 473–478.CrossRefGoogle Scholar
  16. Doyle JJ, Luckow MA. (2003) The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context. Plant Physiology 131, 900–910.CrossRefPubMedGoogle Scholar
  17. Forslund K, Morant M, Jorgensen B, Olsen CE, Asamizu E, Sato S, Tabata S, Bak S. (2004) Biosynthesis of the nitrile glucosidesrhodiocyanoside A and D and the cyanogenic glucosides lotaustrali and linamarin in Lotus japonicus. Plant Physiology 135, 71–84.CrossRefPubMedGoogle Scholar
  18. Gebrehiwot L, Beuselinck PR, Roberts CA. (2002) Seasonal variations in condensed tannins concentration of three Lotus species. Agronomy Journal 94, 1059–1065.Google Scholar
  19. Grant WF, Bullen MR, Nettancourt D. (1962) The cytogenetics of Lotus. I. Embryo-cultured interspecific diploid hybrids closely related to L. Corniculatus. Canadian Journal of Genetics and Cytology 4, 105–128.Google Scholar
  20. Grant WF. (1995) A chromosome atlas and interspecific-intergeneric index for Lotus and Tetragonolobus (Fabaceae). Canadian Journal of Botany 73, 1787–1809.Google Scholar
  21. Grant WF. (1996) Seed pod shattering in the genus Lotus (Fabaceae): a synthesis of diverse evidence. Canadian Journal of Plant Science 76, 447–456.Google Scholar
  22. Gruber M, Ray H, Skadhauge B. (2003) Characterization of proanthocyanin regulatory genes from legumes. Plant & Animal Genomes XI Conference. Poster: P792.Google Scholar
  23. Handberg K, Stougaard J. (1992). Lotus japonicus, an autogamous diploid legume species for classical and molecular genetics. The Plant Journal 2, 487–496.CrossRefGoogle Scholar
  24. Harris J. (2002) Shedding light on an underground problem. Proceedings of the National Academy of Sciences USA 99, 14616–14618.CrossRefGoogle Scholar
  25. Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Pedrosa A, Ouda R, Imaizumi-Anraku H, Bachmair A, Sandal N, Stougaard J. (2001). Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Research 8, 301–310.PubMedGoogle Scholar
  26. Hussain A, Jiang Q, Broughton W, Gresshoff P. (1999). Lotus japonicus nodulates and fixes nitrogen with the broad host range Rhizobium sp. NGR234. Plant Cell Physiology 40, 894–899.Google Scholar
  27. Imaizumi-Anraku H, Kawaguchi M, Koiwa H, Akao S, Syono K. (1997). Two ineffective nodulating mutants ofLotus japonicus: different phenotypes caused by the blockage of the endocytotic bacterial release and nodule maturation. Plant Cell Physiology 38, 871–881.Google Scholar
  28. Jiang Q, Gresshoff P. (1993). Lotus japonicus: a model plant for structure function analysis in nodulation and nitrogen fixation. In: Current Topics of Plant Molecular Biology, VoL. II,. (Gresshoff, PM, ed), CRC Press, Boca Raton, Florida. pp: 97–110.Google Scholar
  29. Jiang Q, Gresshoff P. (1997) Classical and molecular genetics of the model legumeLotus japonicus. Molecular Plant-Microbe Interactions, 10, 59–68.PubMedGoogle Scholar
  30. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K. (2000). Complete genome estructure of the nitrogen fixing symbiotic bacteriumMesorhizobium loti. DNA Research 7, 331–338, 381-406.PubMedGoogle Scholar
  31. Kawaguchi M. (2000) Lotus japonicus “Miyakojima” MG-20: an early flowering accession suitable for indoor handling. Journal of Plant Research 113, 507–509.Google Scholar
  32. Kawaguchi M, Motomura T, Imaizumi-Anraku H, Akao S, Kawasaki S. (2001) Providing the basis for genomics inLotus japonicus: The accessions Miyakojima and Gifu are appropriate crossing partners for genetic analyses. Molecular Genetics and Genomics 266, 157–166.PubMedGoogle Scholar
  33. Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, Akao S. (2002). Root, root hair, and symbiotic mutants of the model legumeLotus japonicus. Molecular Plant-Microbe Interactions 15, 17–26.PubMedGoogle Scholar
  34. Kessler A, Baldwin IT. (2001) Defensive function of herbivore induced plant volatile emissions in nature. Science 291, 2141–2144.CrossRefPubMedGoogle Scholar
  35. Kirkbride, JH, Jr. (1999). Lotus systematics and distribution. Special Publication in Crop Science Societies of America 28, 10.Google Scholar
  36. Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J. (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420, 422–426.CrossRefPubMedGoogle Scholar
  37. Lohar DP, Schuller K, Buzas DM, Gresshoff PM, Stiller J. (2001). Transformation of Lotus japonicus using the herbicide resistance bar gene as a selectable marker. Journal of Experimental Botany 52, 1697–1702.CrossRefPubMedGoogle Scholar
  38. Lohar DP, Bird DM. (2003) Lotus japonicus: a new model to study root-parasitic nematodes. Plant & Cell Physiology 44, 1176–1184.Google Scholar
  39. López-Lara I, Van der Berg JDJ, Thomas-Oates JE, Glushka JJLBJ, Spaink HP. (1995) Structural identification fo the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Molecular Microbiology 15, 627–638.PubMedGoogle Scholar
  40. Lombari P, Ercolano E, El Alaoui H, Chiurazzi M. (2003) A new transformationregeneration procedure in the model legumeLotus japonicus: root explants as a source of large numbers of cells susceptible to Agrobacterium-mediated transformation. Plant Cell Reports 21, 771–777.PubMedGoogle Scholar
  41. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640CrossRefPubMedGoogle Scholar
  42. Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Radutoiu SE, Iaccarino M, Gresshoff PM, Chiurazzi M. (1999). T-DNA Tagging of Nodulation-and Root-Related Genes inLotus japonicus: Expression Patterns and Potential for Promoter Trapping and Insertional Mutagenesis. Molecular Plant-Microbe Interactions 12, 275–284.Google Scholar
  43. Men AE, Meksem K, Kassem MA, Lohar D, Stiller J, Lightfoot D, Gresshoff PM. (2001). Bacterial Artificial Chromosome Library of Lotus japonicus Constructed in an Agrobacterium tumefaciens-Transformable Vector. Molecular Plant-Microbe Interactions 14, 422–425.PubMedGoogle Scholar
  44. Moeller BL, Seigler D. (1999). Biosynthesis of cyanogenic glucosides, cyanolipids and related compounds. In: Plant amino acids. Biochemistry and Biotechnology (Singh BK, Ed.) Marcel Dekker, Inc, New York. pp. 563–609.Google Scholar
  45. Morris P, Carron TR, Robbins MP, and Webb J. (1993). Distribution of condensed tannins in flowering plants of Lotus corniculatus var japonicus and tannin accumulation by transformed root cultures. Lotus Newsletter 24(Beuselinck PR, ed.).Google Scholar
  46. Morris ER and Walker JC. (2003). Receptor-like kinases: the key to response. Current Opinion in Plant Biology 6, 339–342.CrossRefPubMedGoogle Scholar
  47. Nakamura Y, Kaneko T, Asamizu E, Kato T, Sato S, and Tabata S. (2002) Structural Analysis of a Lotus japonicus Genome. II. Sequence Features and Mapping of Sixty-five TAC Clones Which Cover the 6.5-Mb Regions of the Genome. DNA Research 9, 63–70.PubMedGoogle Scholar
  48. Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, and Nagasawa M. (2002a) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420, 426–429CrossRefPubMedGoogle Scholar
  49. Nishimura R, Ohmori M, Fujita H, and Kawaguchi M. (2002b). A Lotus basic leucine zipper protein with a ring-finger motif negatively regulates the developmental program of nodulation. Proceedings of the National Academy of Sciences USA 99, 15206–15210.Google Scholar
  50. Niwa S, Kawaguchi M, Imaizumi-Anraku H, Chechetka SA, Ishizaka M, Ikuba A, and Kouchi H. (2001) Responses of a model legume Lotus japonicus to liopchitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Molecular Plant-Microbe Interactions 14, 848–856.PubMedGoogle Scholar
  51. Orea A, Pajuelo P, Pajuelo E, Quidiello C, Romero JM, and Márquez AJ. (2002) Isolation and characterisation of photorespiratory mutants from Lotus japonicus affected in chloroplastic glutamine synthetase. Physiologia Plantarum, 115, 352–361.CrossRefPubMedGoogle Scholar
  52. Ozawa R, Shimoda T, Kawaguchi M, Arimura G, Nishioka T, and Takabayashi, J. (2000) Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. Journal of Plant Research 113, 427–433.Google Scholar
  53. Pacios-Bras C, Jorda MA, Wijfjes AHM, Harteveld M, Stuurman N, Thomas-Oates JE, and Spaink, HP. (2000) A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NodL in Rhizobium leguminosarum/Emphasis>. Molecular Plant-Microbe Interactions 13, 475–479.PubMedGoogle Scholar
  54. Paré PW and Tumlinson JH. (1999) Plant volatiles as a defense against herbivores. Plant Physiology 121, 325–332.PubMedGoogle Scholar
  55. Parniske M. (2000) Intracellular accomodation of microbes by plants: a common developmental program for symbiosis and disease? Curr. Opin. Plant Biology 3, 320–328.Google Scholar
  56. Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, and Parniske M. (2003). A TILLING Reverse Genetics Tool and a Web-Accessible Collection of Mutants of the LegumeLotus japonicus. Plant Physiology 131, 866–871.CrossRefPubMedGoogle Scholar
  57. Pichersky E and Gershenzon J. (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5, 237–243.CrossRefPubMedGoogle Scholar
  58. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umerhara Y, Groenlund M, Sato S, Nakamura Y, Tabata S, Sandal N, and Stougaard J. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor like kinases. Nature 425, 585–592.CrossRefPubMedGoogle Scholar
  59. Robbins MP, Bavage AD, Strudwicke C, and Morris P. (1998) Genetic Manipulation of Condensed Tannins in Higher Plants. II. Analysis of Birdsfoot Trefoil Plants Harboring Antisense Dihydroflavonol Reductase Constructs. Plant Physiology 116, 1133–1144.CrossRefPubMedGoogle Scholar
  60. Rodríguez-Llorente ID, Pérez-Hormaeche J, El Mounadi K, Dary M, Caviedes MA, Cosson V, Kondorosi A, Ratet P, and Palomares AJ. (2004) From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. The Plant Journal 39, 587–598.PubMedGoogle Scholar
  61. Sandal N, Krussell L, Radotoiu S, Olbryt M, Pedrosa A, Stracke S, Sato S, Kato T, Tabata S, Parniske M, Bachmair A, Ketelsen T, and Stougaard J. (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast cloning of new loci. Genetics 161, 1673–1683.PubMedGoogle Scholar
  62. Sato S, Kaneko T, and Nakamura Y. (2001) Structural analysis of Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 Mb regions of the genome, DNA Research 8, 311–318.CrossRefPubMedGoogle Scholar
  63. Schauser L, Handberg K, Sandal N, Stiller J, Thykaer T, Pajuelo E, Nielsen A, and Stougaard J. (1998) Symbiotic mutants deficient in nodule establishment after T-DNA transformation ofLotus japonicus. Molecular General Genetics 259, 414–423.PubMedGoogle Scholar
  64. Schauser L, Roussis A, Stiller J, and Stougaard J. (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195.PubMedGoogle Scholar
  65. Schultze and Kondorosi (1998) Regulation of symbiotic root nodule development. Annual Review of Genetics 32, 33–57.CrossRefPubMedGoogle Scholar
  66. Senoo K, Soleiman MZ, kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, and Obata H. (2000) Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment. Plant & Cell Physiology 41, 726–732.Google Scholar
  67. Somers DA, Samac DA, and Olhoft PM. (2003) Recent Advances in Legume Transformation. Plant Physiology 131, 892–899.CrossRefPubMedGoogle Scholar
  68. Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, and Martin PG. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proceedings of the National Academy of Sciences USA 92, 2647–2651.Google Scholar
  69. Stiller J, Martirani L, Tuppale S, Chian R-J, Chiurazzi M, and Gresshoff PM. (1997) High frequency transformation and regeneration of transgenic plants in the model legumeLotus japonicus. Journal of Experimental Botany 48, 1357–1365.Google Scholar
  70. Stougaard J. (2001) Genetics and Genomics of root symbiosis. Current Opinion in Plant Biology 4, 328–335.CrossRefPubMedGoogle Scholar
  71. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, and Parniske M. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959–962.CrossRefPubMedGoogle Scholar
  72. Stracke S, Sato S, Sandal N, Koyama M, Kaneko T, Tabata S, and Parniske M. (2004) Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene. Theoretical and Applied Genetics 108, 442–449.PubMedGoogle Scholar
  73. Swanson EB, Somers DA, and Tomes DT. (1990). Birds foot trefoil (Lotus corniculatus L.). In: Biotechnology in Agriculture and Forestry, Vol 10, Legumes and oilseed crops I. (Bajaj, YPS, Ed.), Springer-Verlag, Berlin.Google Scholar
  74. Sz-Borsos, Somaroo BH and Grant WF. (1972) A new diploid species of Lotus (Leguminosae) in Pakistan. Canadian Journal of Botany 50, 1865–1870.Google Scholar
  75. Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, Dazzo FB, and de Brujin FJ. (1998) Nodule organogenesis and symbiotic mutants of the model legumeLotus japonicus. Molecular Plant-Microbe Interactions 11, 684–697.Google Scholar
  76. Szczyglowski K and Amyot L. (2003) Symbiosis, inventiveness by recruitment? Plant Physiology 131, 935–940.CrossRefPubMedGoogle Scholar
  77. Tansengco ML, Imaizumi-Anraku H, Yoshikawa M, Takagi S, Kawaguchi M, Hayashi M, and Marooka Y. (2004). Pollen development and tube growth are affected in the symbiotic mutant of Lotus japonicus crinkle. Plant & Cell Physiology 45, 511–520Google Scholar
  78. Thykjaer T, Stiller J, Handberg K, Jones J, and Stougaard J. 1995. The maize transposable element Ac is mobile in the legumeLotus japonicus. Plant Molecular Biology 27, 981–93.CrossRefPubMedGoogle Scholar
  79. VandenBosh KA and Stacey G. (2003) Summaries of legume Genomics Projects from around the Globe. Community resources for Crops and Models. Plant Physiology 131, 2–35.Google Scholar
  80. Webb KJ, Skøt L, Nicholson MN, Jørgensen B, and Mizen S. (2000) Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging inLotus japonicus. Molecular Plant-Microbe Interactions 13, 606–616.PubMedGoogle Scholar
  81. Wegel E, Schauser L, Sandal N, Stougaard J, and Parniske M. (1998) Mycorrhiza mutants of Lotus japonicus define symbiotically independent steps during symbiotic infection. Molecular Plant-Microbe Interactions 11, 933–936.Google Scholar
  82. Wienkoop S and Saalbach G. (2003) Proteome analysis: novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiology 131, 1080–1090.CrossRefPubMedGoogle Scholar
  83. Zagrobelny M, Bak S, Rasmussen AV, Jorgensen B, Maumann CM, and Lingberg MB. (2003) Cyanogenic glucosides and plant-insect interactions. Phytochemistry 56, 293–306.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of Sevilla, Prof. García González s/nSevillaSpain
  2. 2.Laboratory of Gene Expression, Department of Molecular BiologyUniversity of AarhusAarhus CDenmark

Personalised recommendations