Transgenic Arthropod Resistance


Bacillus Thuringiensi Stem Borer Diamondback Moth Transgenic Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Al-Deeb, M. A., G. E. Wilde, and R. A. Higgins. 2001. No effect of Bacillus thuringiensis corn and Bacillus thuringiensis on the predator Orius insidiosus (Say) (Hemiptera: Anthocoridae). Environ. Entomol. 30:625–629.Google Scholar
  2. Altman, D. W., J. H. Benedict, and E. S. Sachs. 1996. Transgenic plants for the development of durable insect resistance. Proc. New York Acad. Sci. 792:106–114.Google Scholar
  3. Altpeter, F., I. Diaz, H. McAuslane, K. Gaddour, P. Carbonero, and I. K. Vasil. 1999. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol. Breed. 5:53–63.CrossRefGoogle Scholar
  4. Andow, D. A., D. N. Alstad, Y. H. Pang, P. C. Bolin, and W. D. Hutchison. 1998. Using a F2 screen for resistance alleles to Bacillus thuringiensis toxin in European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 91:579–584.Google Scholar
  5. Andow, D. and A. Hilbeck. 2004. Science-based risk assessment for nontarget effects of transgenic crops. BioSci. 54:637–649.Google Scholar
  6. Anonymous. 1995. Bacillus thuringiensis CryIA(b) d-endotoxin and the genetic material nessary for its production (Plasmid vector pCIB4431) in corn. Pesticide Fact Sheet. U. S. Environmental Protection Agency, Washington, DC. pp. 18.Google Scholar
  7. Applebaum, S. W., B. I. Harpaz, and A. Bondi. 1964. Comparative studies on proteolytic enzymes of Tenebrio molitor L. Comp. Biochem. Physiol. 11:85–103.PubMedGoogle Scholar
  8. Arencibia, A., R. Vazquez, D. Prieto, P. Tellez, E. R. Carmona, A. Coego, L. Hernandez, G. De-La-Riva, and G. Selman-Housein. 1997. Transgenic sugarcane plants resistant to stem borer attack. Mol. Breed. 3:247–255.CrossRefGoogle Scholar
  9. Armstrong, C. L., G. B. Parker, J. C. Pershing, S. M. Brown, R. P. Sanders, R. D. Duncan, T. Stone, D. A. Dean, D. L. DeBoer, J. Hart, A. R. Howe, F. M. Morrish, M. E. Pajeau, W. L. Petersen, B. J. Reich, S. J. Sate, S. R. Sims, S. Stehling, R. Rodriguez, C. G. Santino, W. Schuler, L. J. Tarochione, and M. E. Fromm. 1995. Field evaluation of European corn borer control in progeny of 173 transgenic corn borer events expressing an insecticidal protein from Bacillus thuringiensis. Corp Sci. 35:550–557.Google Scholar
  10. Arpaia, S. 1996. Ecological impact of Bt-transgenic plants: 1. Assessing possible effects of cryIIIB toxin on honey bee (Apis mellifera L.) colonies. J. Genet. Breed. 50:315–319.Google Scholar
  11. Arpaia, S., G. Mennella, V. Onofaro, E. Perri, F. Suuseri, and G. L. Rotino. 1997. Production of transgenic eggplant (Solanum melongena L.) resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Theor. Appl. Genet. 95:329–334.CrossRefGoogle Scholar
  12. Ashfaq, M., S. Y. Young, and R. W. McNew. 2001. Larval mortality and development of Pseudoplusia includens (Lepidoptera: Noctuidae) reared on a transgenic Bacillus thuringiensis-cotton cultivar expressing CryIAc insecticidal protein. J. Econ. Entomol. 94:1053–1058.PubMedGoogle Scholar
  13. Ballester, V., F. Granero, B. E. Tabashnik, T. Malvar, and J. Ferré. 1999. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Appl. Envir. Microbiol. 65:1413–1419.Google Scholar
  14. Bartlett, A.C. 1995. Resistance of the pink bollworm to Bt transgenic cotton. Proc. 1995 Beltwide Cotton Conference. National Cotton Council. pp.766–768.Google Scholar
  15. Barton, K. A., H. R. Whiteley, N.-S. Yang. 1987. Bacillus thuringiensis-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85:1103–1109.Google Scholar
  16. Bauer, L. S. 1995. Resistance: A threat to the insecticidal crystal proteins of Bacillus thuringiensis. Florida Entomol. 78:414–443.Google Scholar
  17. Benedict, J. H., E. S. Sachs, D. W. Altman, W. R. Deaton, R. J. Kohel, D. R. Ring, and S. A. Berberich. 1996. Field performance of cottons expressing transgenic CryIA insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 89:230–238.Google Scholar
  18. Bevan, M.W., R.B. Flavell, and M.D. Chilton. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature. 304:184–187.CrossRefGoogle Scholar
  19. Binning, R. R., and M. E. Rice. 2002. Effects of transgenic Bt corn on growth and development of the stalk borer Papaipema nebris (Lepidoptera: Noctuidae). J. Econ. Entomol. 95:622–627.PubMedGoogle Scholar
  20. Birch, A. N. E., I. E. Geoghegan, M. E. N. Majerus, J. W. Mc Nicol, C. A. Hackett, A. M. R. Gatehouse, and J. A. Gatehouse. 1999. Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Mol. Breed. 5:75–83.CrossRefGoogle Scholar
  21. Birk, Y. 1985. The Bowman-Birk inhibitor. Trypsin and chymotrypsin inhibitor from soybeans. Internat. J. Peptide Protein Res. 25:113–131Google Scholar
  22. Bohorova, N., R. Frutos, M. Royer, P. Estañol, M. Pacheco, Q. Rascón, S. McLean, and D. Hoisington. 2001. Novel synthetic Bacillus thuringiensis cry1B gene and the cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworm in transgenic tropical maize. Theor. Appl. Genet. 103:817–826.CrossRefGoogle Scholar
  23. Boulter, D. 1993. Insect control by copying nature using genetically engineered crops. Phytochem. 34:1453–1466.CrossRefGoogle Scholar
  24. Bourguet, D., J. Chaufaux, M. Séguin, C. Buisson, J. L. Hinton, T. J. Stodola, P. Porter, G. Cronholm, L. L. Buschman, and D. A. Andow. 2003. Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer. Theor. Appl. Genet. 106:1225–1233.PubMedGoogle Scholar
  25. Bowman, D. E. 1944. Fractions derived from soybeas and navy beans which retard tryptic digestion of casein. Proc. Soc. Exp. Phsiol. Med. 57:139–140.Google Scholar
  26. Brewer, G. J. 1991. Resistance to Bacillus thuringiensis subsp. kurstaki in the sunflower moth (Lepidoptera: Pyralidae). Environ. Entomol. 20:316–322.Google Scholar
  27. Broadway, R. M., and S. S. Duffey. 1986. Plant proteinases inhibitors mechanism of action and effect on the growth and digestive physiology of larval Heliothi zea and Spodoptera exigua. J. Insect Physiol. 32:827–834.Google Scholar
  28. Byrne, P., S. Ward, J. Harrington, and L. Fuller. 2003. Transgenic plants: An introduction and resource guide. March 2003. Scholar
  29. Cao, J., J.-Z. Zhao, J. Tang, A. Shelton, and E. Earle. 2002. Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor. Appl. Genet. 105:258–264.PubMedGoogle Scholar
  30. Caprio, M. A. 1998. Evaluating resistance management strategies for multiple toxins in the presence of external refuges. J. Econ. Entomol. 91:1021–1031.Google Scholar
  31. Carozzi, N. B., G. W. Warren, S. M. Jayne, R. Lotstein, D. A. Rice, S. Evola, and M. G. Koziel. 1992. Expression of a chemeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol. Biol. 20:539–548.PubMedCrossRefGoogle Scholar
  32. Carrière, Y., and B. E. Tabashnik. 2001. Reversing insect adaptation to transgenic insecticidal plants. Proc. R. Soc. London B. 268:1475–148.Google Scholar
  33. Carrière, Y., C. Ellers-Kirk, M. Sisterson, L. Antilla, M. Whitlow, T. J. Dennehy, and B. E. Tabashnik. 2003. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl. Acad. Sci. USA. 100:1519–1523.PubMedGoogle Scholar
  34. Chan, M. T., L. J. Chen, and H. H Chang. 1996. Expression of Bacillus thuringiensis (Bt) insecticidal crystal protein gene in transgenic potato. Botan. Bull. Acad. Sin. 37:17–23.Google Scholar
  35. Chaufaux, J., J. Müller-Cohn, C. Buisson, V. Sanchis, D. Lereclus, and N. Pasteur. 1997. Inheritance of resistance to the Bacillus thuringiensis CryIC toxin in Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 90: 873–878.Google Scholar
  36. Chen, M. S., B. Johnson, L. Wen, S. Muthukrishnan, K. J. Kramer, T. D. Morgan, and G. R. Reeck. 1992. Rice cystatin-bacterial expression, purification, cysteine proteinase inhibitory activity and insect growth suppressing activity of a truncated form of the protein. Protein Expression Purification. 3:41–49.PubMedGoogle Scholar
  37. Chen, Q., G. Jelenkovic, C. K. Chin, S. Billings, J. Eberhardt, J. C. Goffreda, and P. Day. 1995. Transfer and transcriptional expression of coleopteran cryIIIB endotoxin gene of Bacillus thuringiensis in eggplant. J. Am. Soc. Hort. Sci. 120:921–927.Google Scholar
  38. Cho, Y. S., and S. C. Lee. 1994. Resistance development and cross-resistance of diamondback moth (Lepidoptera: Plutelidae) by single selection of several insecticides. Korean J. Appl. Entomol. 33:242–249.Google Scholar
  39. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lerecus, J. Baum, and D. H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Molecular Biol. Rev. 62:807–813.Google Scholar
  40. Daly, J. C., and P. W. Wellings. 1996. Ecological constraints to the deployment of arthropod resistant crop plants: A cautionary tale. In: R. B. Floyd, A. W. Shepard, and P. J. De Barro (Eds.), Frontiers of Population Ecology. CSIRO Publishing, Melbourne. pp. 311–323.Google Scholar
  41. Dandekar, A. M., G. H. McGranahan, P. V. Vail, S. L. Uratsu, C. Leslie, and J. S. Tebbets. 1994. Low levels of expression of wild type Bacillus thuringiensis var. kurstaki cryIA(c) sequences in transgenic walnut somatic embryos. Plant Sci. 96:151–162.CrossRefGoogle Scholar
  42. Delledonne, M., G. Allegro, B. Belenghi, A. Balestrazzi, F. Picco, A. Levine, S. Zelasco, P. Calligari, and M. Confalonieri. 2001. Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Mol. Breed. 7:35–42.CrossRefGoogle Scholar
  43. deMaagd, R.A., M.S.G. Kwa, H. van der Klei, T. Yamamoto, B. Schipper, J. M. Vlak, W. J. Stiekema, and D. Bosch. 1996. Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 62:1537–1543.Google Scholar
  44. Denolf, P., S. Jansens, M. Peferoen, D. Degheel, and J. Van Rie. 1993. Two different Bacillus thuringiensis δ-endotoxin receptors in the midgut brush border membrane of the European corn borer, Ostrinia nubilalis (Hübner)(Lepidoptera: Pyralidae). Appl. Environ. Microbiol. 59:1828–1837.PubMedGoogle Scholar
  45. Ding X., B. Gopalakrishnan, L. Johnson, F. F. White, X. Wang, T. D. Morgan, K. J. Kramer, and S. Muthukrishnan. 1998a. Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res. 7:77–84.PubMedCrossRefGoogle Scholar
  46. Ding, L.-C., C.-Y. Hu, K.-W. Yeh, P.-J. Wang, and K. E. Espelie. 1998b. Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep. 17:854–860.CrossRefGoogle Scholar
  47. Douches, D. S., A. L. Westedt, K. Zarka, and B. Schroeter. 1998. Potato transformation to combine natural and engineered resistance for controlling potato tuber moth. HortScience. 33:1053–1056.Google Scholar
  48. Duck, N., and S. Evola. 1997. Use of transgenes to increase host plant resistance to insects; opportunities and challenges. In: N. Carozzi and M. Koziel (Eds). Advances in Insect Control: The Role of Transgenic Plants. Taylor and Francis, London. pp. 1–18.Google Scholar
  49. Dutton, A., H. Klein, J. Romeis, and F. Bigler. 2002. Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol. Entomol. 27:441–447.CrossRefGoogle Scholar
  50. Dutton, A., H. Klein, J. Romeis, and F. Bigler. 2003. Prey-mediated effects of Bacillus thuringiensis spray on the predator Chrysoperla carnea in maize. Biol. Control. 26:209–215.CrossRefGoogle Scholar
  51. Ebora, R.V., M. M. Ebora, and M. B. Sticklen. 1994. Transgenic potato expressing the Bacillus thuringiensis CryIA(c) gene effects on the survival and food consumption of Phthorimea operculella (Lepidoptera: Gelechiidae) and Ostrinia nubilalis (Lepidoptera: Noctuidae). J. Econ. Entomol. 87:1122–1127.Google Scholar
  52. Elzen, G.W. 1997. Changes in resistance to insecticides in tobacco budworm populations in Mississippi 1993–1995. Southwest. Entomol. 22:61–72.Google Scholar
  53. Edmonds, H. S., L. N. Gatehouse, V. A. Hilder, and J. A. Gatehouse. 1996. Theinhibitory effects of the cysteine proteinases inhibitor, oryzacystatin, on digestive proteases and on larval survival and development of the southern corn rootworm (Diabrotica undecimpunctata howardi). Entomol. Exp. Appl. 78:83–94.CrossRefGoogle Scholar
  54. Estada, U., and J. Ferré. 1994. Binding of insecticidal crystal protein of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hübner)(Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins. Appl. Environ. Microbiol. 60:3840–3846.PubMedGoogle Scholar
  55. Feldman, J., and T. Stone. 1997. The development of a comprehensive resistance management plan for potatoes expressing the cry3A endotoxin. In: N. Carozzi and M. Koziel (Eds), Advances in Insect Control: The Role of Transgenic Plants. Taylor and Francis, London. pp. 49–61.Google Scholar
  56. Feng, X., H. Chen, Y. Shuai, Q. Xie, and Y. Lu. 1996. A study on the resistance of diamondback moth to Bacillus thuringiensis in Guangdong. Acta Entomol. Sinica 39:238–245.Google Scholar
  57. Ferber, D. 1999. Risks and benefits: GM crops in the cross hairs. Science. 286:1662–1666.PubMedGoogle Scholar
  58. Fernandez-Cornejo, J., and W. D. McBride. 2004. Genetically engineered crops for pest management in U. S. agriculture: Farm-level effects. USDA Economic Research Service, Resource Economics Division, Agricultural Economic Report No. 786.Google Scholar
  59. Ferré, J., and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Ann. Rev. Entomol. 47:501–533.Google Scholar
  60. Ferré, J., M. D. Real, J. van Rie, S. Jansens, and M. Peferoen. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis d-endotoxin by protein blot analysis. Appl. Environ. Microbiol. 57:2816–2820.Google Scholar
  61. Fitches, E., A. M. R. Gatehouse, J. A. Gatehouse. 1997. Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. J. Insect Physiol. 43:727–739.PubMedCrossRefGoogle Scholar
  62. Flint, H. M., T. J. Henneberry, F. D. Wilson, E. Holguin, N. Parks, and R. E. Buchler. 1995. The effects of transgenic cotton, Gossypium hirsutum L., containing Bacillus thuringiensis toxin genes for the control of the pink bollworm Pectinophora gossypiella (Saunders) and other arthropods. Southwest. Entomol. 20:281–292.Google Scholar
  63. Fraley, R.T., S.G. Rogers, R.B. Horsch, P.R. Sanders, J.S. Flick, S.P. Adams, M.L. Bittner, L.A. Brand, C.L. Fink, J.S. Fry, G.R. Galluppi, S.B. Goldberg, N.L. Hoffmann, and S.C. Woo. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA. 80:4803–4807.PubMedGoogle Scholar
  64. Gahan, L. J., F. Gould, and D. G. Heckel. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science. 293:857–860.PubMedCrossRefGoogle Scholar
  65. Granero, F., V. Ballester, and J. Ferré. 1996. Bacillus thuringiensis crystal proteins Cry1Ab and Cry1Fa share a high affininty binding site in Plutella xylostella (L.). Biochem. Biophys. Commun. 224:779–784.Google Scholar
  66. Garczynski, S. F., J. W. Crim, and M J. Adang. 1991. Identification of putative insect brush border membrane binding molecules specific to Bacillus thuringiensis δ-endotoxin by protein blot anaysis. Appl. Environ. Microbiol. 57:2816–2820.PubMedGoogle Scholar
  67. Gatehouse, A. M. R., and D. Boulter. 1983. Assessment of the antimetabolic effects of trypsin-inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid beetle Callosobruchus maculatus. J. Sci. Food Agric. 34:345–350.Google Scholar
  68. Gatehouse, A. M. R., G. M. Davison, C. A. Newell, A. Merryweather, W. D. O. Hamilton, E. P. J. Burgess, R. J. C. Gilbert, and J. A. Gatehouse. 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: Growth room trials. Mol. Breed. 3:49–63.CrossRefGoogle Scholar
  69. Gatehouse, A. M. R., R. E. Down, K. S. Powell, N. Sauvion, Y. Rahbe, C. A. Newell, A. Merryweather, W. D. O. Hamilton, and J. A. Gatehouse. 1996. Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomol. Exp. Appl. 79:295–307.CrossRefGoogle Scholar
  70. Genissel, A., S. Augustin, C. Courtin, G. Pilate, P. Lorme, and D. Bourguet. 2003. Initial frequency of alleles conferring resistance to Bacillus thuringiensis poplar in a field population of Chrysomela tremulae. Proc. Royal Soc. London Ser. B-Biol. Sci. 270:791–797.Google Scholar
  71. Ghareyazie, B., F. Alinia, C. A. Menguito, L. G. Rubia, J. M. De-Palma, E. A. Liwanag, M. B. Cohen, G. S. Khush, and J. Bennett. 1997. Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Mol. Breed. 3:401–414.CrossRefGoogle Scholar
  72. Gould, F. 1998. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Ann. Rev. Entomol. 43:701–726.CrossRefGoogle Scholar
  73. Gould, F., A. Anderson, A. Reynolds, L. Bumgarner, and W. Moar. 1995. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88:1545–1559.Google Scholar
  74. Gould, F., A. Anderson, A. Jones, D. Sumerford, D. G. Heckel, J. Lopez, S. Micinski, R. Leonard, and M. Laster. 1997. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc. Natl. Acad. Sci. USA. 94:3519–3523.PubMedGoogle Scholar
  75. Gould, F., A. Martinez-Ramirez, A. Anderson, J. Ferré, F. J. Silva, and W. J. Moar. 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA. 89:7986–7990.PubMedGoogle Scholar
  76. Graham, J., S. C. Gordon, and R. J. McNicol. 1997. The effect of the CpTi gene in strawberry against attack by vine weevil (Otiorhynchus sulcatus F., Coleoptera: Curculionidae). Ann. Appl. Biol. 131:133–139.Google Scholar
  77. Hafez, M. H. S. Samlama, R. Aboul-Ela, F.N. Zaki, and M. Ragaei. 1997. Bacillus thuringiensis affecting the larval parasite Meteorus laeviventris Wesm. (Hym., Braconidae) associated with Agrotis ypsilon (Rott.) (Lep., Noctuidae) larvae. J. Appl. Entomol. 121:535–538.Google Scholar
  78. Halcomb, J.L., J. H. Benedict, B. Cook, and D. R. Ring. 1996. Survival and growth of bollworm and tobacco budworm on nontransgenic and transgenic cotton expressing a cryIA insecticidal protein (Lepidoptera; Noctuidae). Environ. Entomol. 25:250–255.Google Scholar
  79. Hama, H., K. Suzuki, and H. Tanaka. 1992. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 27:355–362.Google Scholar
  80. Hamel, F., R. Boivin, C. Tremblay, and G. Bellemare. 1997. Structural and evolutionary relationships among chitinases of flowering plants. J. Mol. Evol. 44:614–624.PubMedGoogle Scholar
  81. Heckel, D. G., L. C. Gahan, F. Gould, and A. Anderson. 1997. Indentification of a linkage group with a major effect on resistance to Bacillus thuringiensis CryIAc endotoxin in tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 90:75–86.Google Scholar
  82. Herrera-Estrella, L., A. Depicker, M. van Montagu, and J. Schell. 1983. Expression of chimaeric genes transfered into plant cells using a Ti-plasmid-derived vector. Nature. 303:209–213.CrossRefGoogle Scholar
  83. Hilbeck, A., M. Baumgartner, P. M. Fried, and F. Bilger. 1998a. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. 27:480–487.Google Scholar
  84. Hilbeck, A., W. J. Moar, M. Pusztai-Carey, A. Filippini, and F. Bigler. 1998b. Toxicity of the Bacillus thuringiensis Cry1Ab toxin on the predator Chrysoperla carnea (Neuroptera: Chrysopidae) using diet incorporated bioassays. Environ. Entomol. 27:1255–1263.Google Scholar
  85. Hilbeck, A., W. J. Moar, M. Pusztai-Carey, A. Filippini, and F. Bigler. 1999. Preymediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea. Entomol. Exp. Appl. 91:305–316.CrossRefGoogle Scholar
  86. Hilder, V. A., A. M. R. Gatehouse, S. E. Sheerman, R. F. Barker, and D. Boulter. 1987. A novel mechanism of insect resistance engineered into tobacco. Nature. 330:160–163.CrossRefGoogle Scholar
  87. Huang, F., R. A. Higgins, and L. L. Buschman. 1997. Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp. kurstaki under selection pressure in European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae). J. Econ. Entomol. 90:1137–1143.Google Scholar
  88. Huang, F., L. L. Buschman, R. A. Higgins, and W. H. McGaughey. 1999a. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science. 284:965–967.PubMedCrossRefGoogle Scholar
  89. Huang, F., R. A. Higgins, and L. L. Buschman. 1999. Transgenic Bt-plants: Successes, challenges, and strategies. Pestology: Proceedings, II Asia and Pacific Plant Protection Conference. Mumbai, India. 23: 2–29.Google Scholar
  90. Iannacone, R., P. D. Grieco, and F. Cellini. 1997. Specific sequence modifications of ac endotoxin gene result in high levels of expression and insect resistance. Plant Mol. Biol. 34:485–496.PubMedCrossRefGoogle Scholar
  91. Ishimoto, M., and K. Kitamura. 1989. Growth inhibitory effects of an α-amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Appl. Entomol. Zool. 24:281–286.Google Scholar
  92. Ishimoto, M., T. Sato, M. J. Chrispeels, and K. Kitamura. 1996. Bruchid resistance of transgenic azuki bean expressing seed alpha-amylase inhibitor of common bean. Entomol. Exp. Appl. 79: 309–315.CrossRefGoogle Scholar
  93. James, C. 2000. Global status of transgenic crops: Challenges and opportunities. In: A. D. Arencibia (Ed.), Plant Genetic Engineering: Towards the Third Millennium. Elsevier, New York. pp. 1–7.Google Scholar
  94. James, C. 2003. Preview: Global Status of Commercialized Transgenic Crops: 2003. ISAAA Briefs. No. 30. ISAAA: Ithaca, NY.Google Scholar
  95. James, C. 2004. Future Global Potential for Bt Cotton: Opportunities and Challenges. ISAAA: Ithaca, NY. Scholar
  96. Jansens, S., M. Cornelissne, R. De-Clercq, A. Reynaerts, and M. Peferoen. 1995. Phthorimaea operculella (Lepidoptera: Gelechiidae) resistance in potato by expression of the Bacillus thuringiensis cryIA(b) insecticidal crystal protein. J. Econ. Entomol. 88:1469–1476.Google Scholar
  97. Jansens, S., A. Van-Vliet, C. Dickurt, L. Buyssel, C. Piens, B. Saey, A. De-Wulf, V. Gossele, A. Paez, E. Goebel, and M. Peferoen. 1997. Transgenic corn expressing a cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage. Crop Sci. 37:1616–1624.Google Scholar
  98. Jurat-Fuentes, J. L., and M. J. Adang. 2001. Importance of Cry1 δ-endotoxin domain II Loops for binding specificity in Heliothis virescens (L.). Appl. Environ. Microbiol. 67:323–329.PubMedCrossRefGoogle Scholar
  99. Jurat-Fuentes, J. L., F. L. Gould, and M. J. Adang. 2003. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Appl. Environ. Microbiol. 69:5898–5906.PubMedCrossRefGoogle Scholar
  100. Jelenkovic, G., S. Billing, Q. Chen, J. Lashomb, G. Hamilton, and G. Ghidiu. 1998. Transformation of eggplant with synthetic cryIIIA gene produces a high level of resistance to the Colorado potato beetle. J. Am.Soc. Hort. Sci. 123:19–25.Google Scholar
  101. Jenkins, J. N., J. C. Jr. McCarty, R. E. Buehler, J. Kiser, C. Williams, and T. Wofford. 1997. Resistance of cotton with delta-endotoxin genes from Bacillus thuringiensis var. kurstaki on selected Lepidopteran insects. Agron. J. 89:768–780.Google Scholar
  102. Johnson, D. E., G. L. Brookhart, K. J. Kramer, B. D. Barnett, and W. H. McGaughey. 1990. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae. J. Invertebr. Pathol. 55:235–244.PubMedGoogle Scholar
  103. Johnson, M. T., and F. Gould. 1992. Interaction of genetically engineered host plant resistance and natural enemies of Heliothis virescens (Lepidoptera: Noctuidae) in tobacco. Environ. Entomol. 21:586–597.Google Scholar
  104. Johnson, T. M., A. S. Rishi, P. Nayak, and S. K. Sen. 1996. Cloning of ac endotoxin gene of Bacillus thuringiensis var. tenebrionis and its transient expressing in indica rice. J. Biosci. 21:673–685.Google Scholar
  105. Jongsma, M. A., and C. Bolter. 1997. The adaptation of insects to plant protease inhibitors. J. Insect Physiol. 43:885–895.PubMedCrossRefGoogle Scholar
  106. Jouanin, L., M. Bonade-Bottino, C. Girard, G. Morrot, and M. Giband. 1997. Transgenic plants for insect resistance. Plant Sci. 131:1–11.Google Scholar
  107. Kanrar, S., J. Venkateswari, P. B. Kirti, and V. L. Chopra. 2002. Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep. 20:976–981.Google Scholar
  108. Kar, S., D. Basu, S. Das, N. A. Ramkrishnan, P. Mukherjee, P. Nayak, and S. K. Sen. 1997. Expression of CryIA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgen. Res. 6:177–185.Google Scholar
  109. Kirsten, J., and M. Gouse. 2002. Bt cotton in South Africa: Adoption and impact on farm incomes amongst small-and large-scale farmers. ISB News Report October 2002. Scholar
  110. Kleiner, K. W., D. D. Ellis, B. H. McCown, and K. F. Raffa. 1995. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cry1A(a) delta-endoxin gene against forest tent caterpillar (Lepidoptera: Lasiocampidae) and gypsy moth (Lepidoptera: Lymantriidae) following winter dormancy. Environ. Entomol. 24:1358–1364.Google Scholar
  111. Knight, J. 2003. Agency ignoring its advisers’ over Bt maize. Nature. 422:5.PubMedGoogle Scholar
  112. Knols, B. G., and M. Dicke. 2003. Bt crop risk assessment in the Netherlands. Nature Biotechnol. 21:973–974.CrossRefGoogle Scholar
  113. Koziel, M. G., G. L. Beland, C. Bowman, N. B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Lacinis, K. Lewis, D. Maddox, K. McPherson, M. R. Meghji, E. Merlin, R. Rhodes, G. W. Warren, M. Wright, and S. V. Evola. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technol. 11:194–200.CrossRefGoogle Scholar
  114. Kramer, K. J., C. Dziadik-Turner, and D. Koga. 1985. Chitin metabolism in insects. In: G. A. Kerkut and L. I. Gilbert (Eds.), Comprehensive Insect Physiology, Biochemistry and Phramacology Volume 3. Pergamon Press, New York. pp. 75–115.Google Scholar
  115. Lawrence, P. K., and K. R. Koundal. 2002. Plant protease inhibitors in control of phytophagous insects, Electronic Journal of Biotechnology, 5, April 15. Scholar
  116. Lecardonnel, A., L. Chauvin, L. Jouanin, A. Beaujean, G. Prevost, and B. Sangwan-Norreel. 1999. Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Sci. 140:71–79.CrossRefGoogle Scholar
  117. Lee, S. I., S.-H. Lee, J. C. Koo, H. J. Chun, C. O. Lim, J. H. Mun, Y. H. Song, and M. J. Cho. 1999. Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol. Breed. 5:1–9.Google Scholar
  118. Lee, M. K., R. M. Aguda, M. B. Cohen, F. L. Gould, and D. H. Dean. 1997. Determination of binding of Bacillus thuringiensis δ-endotoxin receptors to rice stem borer midguts. Appl. Environ. Microbiol. 63:1453–1459.Google Scholar
  119. Lee M. K., F. Rajamohan, F. Gould, and D. H. Dean. 1995. Resistance to Bacillus thuringiensis Cry1A δ-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol. 61:3836–3842.PubMedGoogle Scholar
  120. Leple, J. C., M. Bonadebottino, S. Augustin, G. Pilate, V. D. Letan, A. Delplanque, D. Cornu, and L. Jouanin. 1995. Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol. Breed. 1:319–328.Google Scholar
  121. Liang, C., G. Brookhart, G. H. Feng, G. R. Reeck, and K. J. Kramer. 1991. Inhibition of digestive proteinases of stored grain Coleoptera by oryzacystatin a cystein proteinase inhibitor from rice seed. FEBS Letters. 278:139–142.PubMedCrossRefGoogle Scholar
  122. Liu, Y., B. E. Tabashnik, and M. W. Johnson. 1995. Larval age affects resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 88:788–792.Google Scholar
  123. Liu, Y., B. E. Tabashnik, and M. Pusztai-Carey. 1996. Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 89:798–804.Google Scholar
  124. Liu, Y., B. E. Tabashnik, B. E. Moar, and R. A. Smith. 1998. Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostela). Appl. Environ. Microbiol. 64:1385–1389.PubMedGoogle Scholar
  125. Liu, Y., B. E. Tabashnik, S. K. Meyer, Y. C. Carrière, and A. C. Bartlett. 2001. Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac. J. Econ. Entomol. 94:248–252.PubMedGoogle Scholar
  126. Losey, J. E., L. S. Rayor, and M. E. Carter. 1999. Transgenic pollen harms monarch larvae. Nature. 399:214.PubMedCrossRefGoogle Scholar
  127. Lynch, R. E., B. R. Wiseman, D. Plaisted, and D. Warnick. 1999. Evaluation of transgenic sweet corn hybrids expressing cryIA(b) toxin for resistance to corn earworm and fall armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 92:246–252.PubMedGoogle Scholar
  128. Maqbool, S. B. S. Riazuddin, N. T. Loc., A. M. R. Gatehouse, J. A. Gatehouse, and P. Christou. 2001. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol. Breed. 7:85–93.CrossRefGoogle Scholar
  129. Machuka, J., E. J. M. Van Damme, W. J. Peumans, and L. E. N. Jackai. 1999. Effect of plant lectins on larval development of the legume pod borer, Maruca vitrata. Entomol. Exp. Appl. 93:179–187.CrossRefGoogle Scholar
  130. Marfà, V., E. Merlé, R. Gabarra, J. M. Vassal, E. Guiderdoni, and J. Messeguer. 2002. Influence of developmental stage of transgenic rice plants (cv. Senia) expressing the cry1B gene on the level of protection against the striped stem borer (Chilo suppressalis). Plant Cell Rep. 20:1167–1172.Google Scholar
  131. Masoero, F., M. Moschini, F. Rossi, A. Prandini, and A. Pietri. 1999. Nutritive value, mycotoxin contamination and in vitro rumen fermentation of normal and genetically modified corn (Cry1A9b) grown in northern Italy. Maydica. 44:205–209.Google Scholar
  132. Mazier, M., J. Chaufaxu, V. Sanchis, D. Lereclus, M. Giband, and J. Tourneur. 1997. The cryptic gene from Bacillus thuringiensis provides protection against Spodoptera littoralis in young transgenic plants. Plant Sci. 127:179–190.CrossRefGoogle Scholar
  133. McGaughey, W. H. 1985. Insect Resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195.Google Scholar
  134. McGaughey, W. H., and R. W. Beeman. 1988. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 81:28–33.Google Scholar
  135. McGaughey, W. H., and D. E. Johnson. 1994. Influence of crystal protein composition of Bacillus thuringiensis strains on cross-resistance in Indianmeal moths (Lepidoptera: Pyralidae). J. Econ. Entomol. 87:535–540.Google Scholar
  136. McGaughey, W. H., and D. E. Johnson. 1992. Indianmeal moth (Lepidoptera: Pyralidae) resistance to different strains and mixtures of Bacillus thuringiensis. J. Econ. Entomol. 85:1594–1600.Google Scholar
  137. Metz, T.D., R. Dixit, and E.D. Earle. 1995. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Reports 15:287–292.CrossRefGoogle Scholar
  138. Michaud, D. 1997. Avoiding protease-mediated resistance in herbivorous pests. Trends Biotech. 15:3–6.Google Scholar
  139. Moar, W. J., M. Pusztai-Carey, H. van Faassen, D. Bosch, R. Frutos, C. Rang, K. Luo, and M. J. Adang 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61:2086–2092.Google Scholar
  140. Mochizuki, A., Y. Nishizawa, H. Onodera, Y. Tabei, S. Toki, Y. Habu, M. Ugaki, and Y. Ohashi. 1999. Transgenic rice plants expressing a trypsin inhibitor are resistant against rice stem borers, Chilo supressalis. Entomol. Exp. Appl. 93:173–178.CrossRefGoogle Scholar
  141. Morin, S., R. W. Biggs, M. S. Sisterson, L. Shriver, C. Ellers-Kirk, D. Higginson, D. Holley, L. J. Gahan, D. G. Heckel, Y. Carriere, T. J. Dennehy, J. K. Brown, and B. E. Tabashnik. 2003. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Natl. Acad. Sci. USA. 100:5004–5009.PubMedCrossRefGoogle Scholar
  142. Müller-Cohn, J., J. Chaufaux, C. Buisson, N. Gilois, V. Sanchis, and D. Lereclus. 1996. Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to CryIC and cross-resistance to other Bacillus thuringiensis crystal toxins. J. Econ. Entomol. 89:791–797.Google Scholar
  143. Munkvold, G. P., R. L. Hellmich, and W. B. Showers. 1997. Reduced fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathol. 87:1071–1077.Google Scholar
  144. Murai, N., D. W. Sutton, M. G. Murray, J. L. Slightom, D. J. Merlo, N. A. Reichert, C. Sengupta-Gopalan, C. A. Stock, R. F. Barker, J. D. Kemp, and T. C. Hall. 1983. Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science. 222:476–482.Google Scholar
  145. Murdock, L. L., and R. E. Shade. 2002. Lectins and proteinase inhibitors as plant defenses against insects. J. Agric. Food Chem. 50:6605–6611.PubMedCrossRefGoogle Scholar
  146. Nayak, P., D. Basu, S. Das, A. Basu, D. Ghosh, N. A. Ramakrishnan, M. Ghosh, and S. K. Sen. 1997. Transgenic elite indica rice plants expressing cryIAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc. Natl. Acad. Sci. USA. 94:2111–2116.PubMedCrossRefGoogle Scholar
  147. Noteborn, H. P. J. M., M. E. Bienenmann-Ploum, J. H. J. van den Berg, G. A. Alink, L. Zolla, and H. A. Kuiper. 1993. Food safety of transgenic tomatoes expressing the insecticidal crystal protein CryIA(b) from Bacillus thuringiensis and the marker enzyme APH(3’)11. Mededelingen-van-de-Faculteit-Landbouwwetenschappen,-Universiteit-Gent. 58:(4b)1851–1858.Google Scholar
  148. Nutt, K. A., P. G. Allsopp, T. K. McGhie, K. M. Shepherd, P. A. Joyce, G. O. Taylor, R. B. McQualter, and G. R. Smith. 1999. Transgenic sugarcane with increased resistance to canegrubs. Proc. Aust. Soc. Sugar Cane Technol. 21:171–176.Google Scholar
  149. Omer, A. D., J. Granett, A.M. Dandekar, J. A. Driver, S. L. Uratus, and F.A. Tang 1992. Effects of transgenic petunia expressing Bacillus thuringiensis toxin on selected lepidopteran insects. Biocontrol Sci. Technol. 7:437–488.Google Scholar
  150. Oppert, B. S. 2001. Transgenic plants expressing enzyme inhibitors and the prospects for biopesticide development. In: O. Koul and G. S. Dhaliwal. (Eds.), Phytochemical Biopesticides, Harwood Academic, Amsterdam, pp. 83–95.Google Scholar
  151. Oppert, B., K. J. Kramer, R. W. Beeman, D. Johnson, and W. H. McGaughey. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272:23473–23476.PubMedCrossRefGoogle Scholar
  152. Ostlie, K. R., W. D. Hutchison, and R. L. Hellmich. 1997. Bt-corn and European corn borer. Long term success through resistance management. North Central Region Extension Publication NCR 602. University of Minnesota, St. Paul, MN USAGoogle Scholar
  153. Peck, S. L., F. Gould, and S. P. Ellner. 1999. Spread of resistance in spatially extended regions of transgenic cotton: Implications for management of Heliothis virescens (Lepidoptera: Noctuidae). J Econ. Entomol. 92:1–16.Google Scholar
  154. Peferoen, M. 1997. Insect control with transgenic plants expressing Bacillus thuringiensis crystal proteins. In: N. Craozzi and M. Koziel (Eds.), Advances in Insect Control: The Role of Transgenic Plants, Taylor and Francis, London. pp. 21–48.Google Scholar
  155. Peferoen, M., S. Jansens, A. Reynaerts, and L. Leemans. 1990. Potato plants with engineered resistance against insect attack. In: M. E. Vayda and W. C. Park (Eds.), Molecular and Cellular Biology of the Potato, CAB International, Wallingford, United Kingdom. pp. 193–204.Google Scholar
  156. Perez, C., and A. M. Shelton. 1997. Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. J. Econ. Entomol. 90:87–93.Google Scholar
  157. Perlak, F. J., R. W. Deaton, T. A. Armstrong, R. L. Fuchs, S. R. Rims, J. T. Greenplate, and D. A. Fischhoff. 1990. Insect resistant cotton plants. Bio/Technol. 8:939–943.CrossRefGoogle Scholar
  158. Perlak, F. J., T. B. Stone, Y. M. Muskopf, L. J. Peterson, G. B. Parker, S. A. McPherson, J. Wyman, S. Love, G. Reed, D. Biever, and D. A. Fischoff. 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Bio. 22:313–321.Google Scholar
  159. Pew Initiative on Food and Biotechnology. 2002. Three years later: Genetically Engineered Corn and the Monarch Butterfly Controversy. Pew Initiative on Food and Biotechnology, Washington, DC., 19p.Google Scholar
  160. Phipps R., and J. R. Park. 2002. Environmental benefits of genetically modified crops: Global and European perspectives on their ability to reduce pesticide use. J. Animal Feed Sci. 11:1–18.Google Scholar
  161. Pilcher, C. D., M. E. Rice, R. A. Higgins, K. L. Steffey, R. L. Hellmich, J. Witkowski, D. Calvin, K. R. Ostlie, and M. Gray. 2002. Biothechnology and the European corn borer: Measuring historical farmer perceptions and adoption of transgenic Bt corn as a pest management strategy. J. Econ. Entomol. 95:878–892.PubMedGoogle Scholar
  162. Pilcher, C.D., J.J. Obrycki, M.E. Rice, and L.C. Lewis. 1997a. Preimaginal development, survival, field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environ. Entomol. 26:446–454.Google Scholar
  163. Pilcher, C.D., M.E. Rice, J.J. Obrycki, and L.C. Lewis. 1997. Field and laboratory evaluations of transgenic Bacillus thuringiensis corn on secondary lepidopteran pests (Lepidoptera: Noctuidae). J. Econ. Entomol. 90:669–678.Google Scholar
  164. Pimentel, D. S., and Raven, P. H. 2000. Bt corn pollen impacts on nontarget Lepidoptera: Assessment of effects in nature. Proc. Natl. Acad. Sci. USA. 97:8198–8199.PubMedCrossRefGoogle Scholar
  165. Powell, K. S., A. M. R. Gatehouse, V. A. Hilder, and J. A. Gatehouse. 1993. Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol. Exp. Appl. 66:119–126.Google Scholar
  166. Powell, K. S., J. Spence, M. Bharathi, J. A. Gatehouse, and A. M. R. Gatehouse. 1998. Immunohistochemical and developmental studies to elucidate the mechanism of action of the snow drop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J. Insect Physiol. 44:529–539.PubMedCrossRefGoogle Scholar
  167. Qaim, M., and D. Zilberman. 2003. Yield effects of genetically modified crops in developing countries. Science. 299:900–902.PubMedCrossRefGoogle Scholar
  168. Rahardja, U., and M. E. Whalon. 1995. Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis d-endotoxin in the Colorado potato beetle (Coleoptera: Chrysomelidae) J. Econ. Entomol. 88:21–26.PubMedGoogle Scholar
  169. Ramachandran, S., G. D. Buntin, J. N. All, P. L. Raymer, and C. N. Stewart. 1998. Greenhouse and field evaluations of transgenic canola against diamondback moth, Plutella xylostella, and corn earworm, Helicoverpa zea. Entomol. Exp. Appl. 88:17–24.CrossRefGoogle Scholar
  170. Rao, K. V., K. S. Rathore, T. K. Hodges, X. Fu, E. Stoger, D. Sudhakar, S. Williams, P. Christou, M. Bharathi, D. P. Bown, K. S. Powell, J. Spence, A. M. R. Gatehouse, and J. Gatehouse. 1998. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J. 15: 469–477.PubMedCrossRefGoogle Scholar
  171. Rhim, S. L., H. J. Cho, B. D. Kim, W. Schnetter, and K. Geider. 1995. Development of insect resistance in tomato plants expressing the delta-endotoxin gene of Bacillus thuringiensis subsp. tenebrionis. Mol. Breed. 1:229–236.CrossRefGoogle Scholar
  172. Rice, M. E., and C. D. Pilcher. 1998. Potential benefits and limitations of transgenic Bt corn for management of the European corn borer (Lepidoptera: Crambidae). Am. Entomol. 44:75–78.Google Scholar
  173. Riddick, E. W., and P. Barbosa. 1998. Impact of Cry3A-intoxicated Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and pollen on consumption, development, and fecundity of Coleomegilla maculata (Coleoptera: Coccinellidae). Entomol. Soc. Amer. 91:303–307.Google Scholar
  174. Rissler, J., and M. Mellon. 1996. The Ecological Risks of Engineered Crops, MIT Press, Cambridge, Mass.Google Scholar
  175. Robison, D. J., B. H. McCown, and K. F. Raffa. 1994. Responses of gypsy moth (Lepidoptera: Lymantriidae) and forest tent caterpillar (Lepidoptera: Lasiocampidae) to transgenic poplar, Populus spp., containing a Bacillus thuringiensis delta-endotoxin gene. Environ. Entomol. 23:1030–1041.Google Scholar
  176. Roush, R. T. 1997. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pesticide Sci. 51:328–334.Google Scholar
  177. Sacchi, V. F., P. Parenti, G. M. Hanozet, B. Giordana, P. Luthy, and M. G. Wolfersberger. 1986. Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 204:213–218.CrossRefGoogle Scholar
  178. Sachs, E. S., J. H. Benedict, J. F. Taylor, D. M. Stelly, S. K. Davis, and D. W. Altman. 1996. Pyramiding CryIA(b) insecticidal protein and terpenoids in cotton to resist tobacco budworm (Lepidoptera: Noctuidae). Environ. Entomol. 25:1257–1266.Google Scholar
  179. Salama, H. S., and M. M. Matter. 1991. Tolerance level to Bacillus thuringiensis Berliner in the cotton leafworm Spodoptera littoralis (Boisduval) (Lep., Noctuidae). J. Appl. Entomol. 111:225–230.Google Scholar
  180. Sanchis, V., and D. J. Ellar. 1993. Identification and partial purification of a Bacillus thuringiensis Cry1C δ-endotoxin binding protein from Spodoptera littoralis gut membranes. FEBS Lett. 316:264–268.PubMedCrossRefGoogle Scholar
  181. Saraswathy, N., and P. A. Kumar. 2004. Protein engineering of d-endotoxins of Bacillus thuringiensis. Electronic J. Biotechnol. 7, August 15. Scholar
  182. Schroeder, H. E., S. Gollasch, A. Moore, L. M. Tabe, S. Craig, D. C. Hardie, D. Spencer, T. J. V. Higgins, and M. J. Chrispeels. 1995. Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L). Plant Physiol. 107:1233–1239.PubMedGoogle Scholar
  183. Schuler, T. H., G. M. Poppy, B. R. Kerry, and I. Denholm. 1998. Insect-resistant transgenic plants. Trends Biotechnol. 16:175–182.Google Scholar
  184. Sears, M. K., R. L. Hellmich, D. F. Stanley-Horn, K. S. Oberhauser, J. M. Pleasants, H. R. Mattila, B. D. Siegfried, and G. P. Dively. 2001. Impact of Bt corn pollen on monarch butterfly populations: A risk assessment. Proc. Natl. Acad. Sci. USA. 98:11937–11942.PubMedCrossRefGoogle Scholar
  185. Service, R. F. 2001. Arson strikes research labs and tree farm in Pacific Northwest. Science. 292:1622–1223.PubMedGoogle Scholar
  186. Setamou, M., J. S. Bernal, J. C. Legaspi, T. E. Mirkov, and B. C. Legaspi, Jr. 2002. Evaluation of lectinexpressing transgenic sugarcane against stalkborers (Lepidoptera: Pyralidae): Effects on life history parameters. J. Econ. Entomol. 95:469–477.PubMedGoogle Scholar
  187. Shade, R. E., H. E. Schroeder, J. J. Pueyo, L. M. Tabe, L. L. Murdock, T. J. V. Higgins, and M. J. Chrispeels. 1994. Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnol. 12:793–796.CrossRefGoogle Scholar
  188. Sharma, H. C., K. K. Sharma, N. Seetharama, and R. Ortiz. 2000. Prospects for using transgenic resistance to insects in crop improvement. Electron. J. Biotechnol. 3:August 15. Scholar
  189. Shelton, A.M., J.-Z. Zhao, and R. T. Roush. 2002. Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Ann. Rev. Entomol. 47:845–881.CrossRefGoogle Scholar
  190. Shelton, A. M., J. L. Robertson, J. D. Tang, C. Perez, S. D. Eigenbrode, H. K. Perisler, W. T. Wilsey, and R. J. Cooley. 1993. Resistance of diamondback moth to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 86:697–705.Google Scholar
  191. Shin, D. I., G. K. Podila, Y. Huang, and D. F. Karnosky. 1994. Transgenic larch expressing genes for herbicide and insect resistance. Can. J. For. Res. 24:2059–2067.Google Scholar
  192. Sims, S. R., and T. B. Stone. 1991. Genetic basis of tobacco budworm resistance to an engineered Pseudomonas fluoresces expressing the delta-endotoxin of Bacillus thuringiensis kurstaki. J. Invert. Pathol. 57:206–210.CrossRefGoogle Scholar
  193. Sims, S.R., and J.W. Martin. 1997. Effects of the Bacillus thuringiensis insecticidal proteins CryIA(b), CryIA(c), CryIIA, and CryIIIA on Folsomia candida and Xenylla grisea (Insects: Collembola). Pedobiologia. 41:412–416.Google Scholar
  194. Singsit, C., M. L. Adang, R.E. Lynch, W. F. Anderson, A. Wang, G. Cardineau, and P. Ozias-Akins. 1997. Expression of a Bacillus thuringiensis cryIA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgen. Res. 6:169–176.Google Scholar
  195. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775–806.PubMedGoogle Scholar
  196. Song, S.S. 1991. Resistance of diamondback moth (Plutella xylostella L.: Ypoonomeutidae: Lepidoptera) against Bacillus thuringiensis Berliner. Korean J. Appl. Entolomol. 30:291–293.Google Scholar
  197. Stanley-Horn, D. E., G. P. Dively, R. L. Hellmich, H. R. Mattila, M. K. Sears, R. Rose, L. C. H. Jesse, J. E. Losey, J. J. Obrycki, and L. Lewis. 2002. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc. Natl. Acad. Sci. USA. 98:11931–11936.Google Scholar
  198. Stewart, C. N. Jr, M. J. Adang, J. N. All, H. R. Boerma, G. Cardineau, D. Tucker, and W. A. Parrott. 1996a. Genetic trasmsformatoin, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis CryIA(c) gene. Plant Physiol. 112:121–129.PubMedCrossRefGoogle Scholar
  199. Stewart, C. N. Jr, M. J. Adang, J. N. All, P. L. Raymer, S. Ramachandran, and W. A. Parrott. 1996b. Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis CryIA(c) gene. Plant Physiol. 112:115–120.CrossRefGoogle Scholar
  200. Stoger, E., S. Williams, P. Christou, R. E. Down, and J. A. Gatehouse. 1999. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphids Sitobion avaenae. Mol. Breed. 5:65–73.CrossRefGoogle Scholar
  201. Stone, T., S. R. Smis, and P. G. Marone. 1989. Selection of tobacco budworm for resistance to a genetically engineered Pseudomonus fluorescens containing the delta-endotoxin of Bacillus thuringiensis subsp. kurstaki. J. Invertebr. Pathol. 53:228–234.Google Scholar
  202. Sutton, D. W., P. K. Havstad, and J. D. Kemp. 1992. Synthetic cryIIIA gene Bacillus thuringiensis improved for high expression in plants. Transgen. Res. 1:228–236.Google Scholar
  203. Tabashnik, B. E., N. L. Cushing, N. Finson, and M. W. Johnson. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 83:1671–1676.Google Scholar
  204. Tabashnik, B. E., N. Finson, C. F. Chilcutt, N. L. Cushing, and M. W. Johnson. 1993. Increasing efficiency of bioassays: evaluation of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 86:635–644.Google Scholar
  205. Tabashnik, B. E., N. Finson, and M. W. Johnson. 1991. Managing resistance to Bacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 84:49–55.Google Scholar
  206. Tabashnik, B. E., N. Finson and F. R. Groeters, M. J. Moar, M. W. Johnson, K. Luo, and M. J. Adang. 1994a. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl. Acad. Sci. USA. 91:4120–4124.PubMedGoogle Scholar
  207. Tabashnik, B. E., N. Finson and M. W. Johnson, and D. G. Heckel. 1994b. Cross-resistance to Bacillus thuringiensis toxin CryIF in diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 60: 4627–4629.PubMedGoogle Scholar
  208. Tabashnik, B. E., N. Finson, M. W. Johnson, and D. G. Heckel. 1995. Prolonged selection affects stability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 88:219–224.Google Scholar
  209. Tabashnik, B. E., Y. B. Liu, T. Malvar, D. G. Heckel, L. Masson, V. Ballester, F. Granero, J. L. Mensua, and J. Ferré. 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA. 94:12780–12785.PubMedGoogle Scholar
  210. Tabashnik, B. E., J. M. Schwartz, N. Finson, and M. W. Johnson. 1992. Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 85:1046–1055.Google Scholar
  211. Tang, J. D., S. Gilboa, R. T. Roush, and A. S. Shelton. 1997. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J. Econ. Entomol. 90:732–741.Google Scholar
  212. Tang, T., and Y. Tian. 2003. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified δ-endotoxin gene of Baciullus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J. Exp. Bot. 54:835–844.Google Scholar
  213. Tao, R., A. M. Dandekar, S. L. Uratsu, P. V. Vail, and J. S. Tebbets. 1997. Engineering genetic resistance against insects in Japanese persimmon using the CryIA(c) gene of Bacillus thuringiensis. J. Am. Soc. Hort. Sci. 122:764–771.Google Scholar
  214. Vadlamudi, R. K., T. H. Ji, and L. A. Bulla, Jr. 1993. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J. Biol. Chem. 268:12334–12340.PubMedGoogle Scholar
  215. Van Aarssen, R., R. P. Soetaert, M. Stam, J. Dockx, V. Gossele, J. Seurinck, A. Reynaerts, and M. Cornelissen. 1995. CryIA(b) transcript formation in tobacco is inefficient. Plant Mol. Biol. 28:513–524.PubMedCrossRefGoogle Scholar
  216. Van Der-Salm, T., D. Bosch, G. Honee, L. Feng, E. Munsterman, P. Bakker, W. J. Stiekema, and B. Visser. 1994. Insect resistance of transgenic plants that express modified Bacillus thuringiensis CryIA(b) and CyIC gene: A resistance management strategy. Plant Mol. Biol. 26:51–59.Google Scholar
  217. Van Rie, J., S. Jansens, H. Höfte, D. Degheele, and H. Van Mellaert. 1990a. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl. Environ. Microbiol. 56:1378–1385.PubMedGoogle Scholar
  218. Van Rie J., W. H. McGaughey, D. E. Johnson, B. D. Barnett, and H. Van Mellaert. 1990b. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 247:72–74.PubMedGoogle Scholar
  219. Van Tol, N.B., and G. L. Lentz. 1998. Influence of Bt cotton on benficial arthropod populations. Proc. U. S. Beltwide Cotton Conf. pp.1052–1054.Google Scholar
  220. Van Damme, E. J. M., W. J. Peumans, A. Barre, and P. Rouge. 1998. Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 17:575–692.Google Scholar
  221. Walker, D., H. R. Boerma, J. All, and W. Parrott. 2002. Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Mol. Breed. 9:43–51.CrossRefGoogle Scholar
  222. Wang, X., X. Ding, B. Gopalakrishnan, T. D. Morgan, L. B. Johnson, F. F. White, and K. J. Kramer. 1996. Characterization of a 46 kDa insect chitinase from transgenic tobacco. Insect Biochem. Mol. Biol. 26:1055–1064.Google Scholar
  223. Warren, G. W., N. B. Carozzi, N. Desai, and M. G. Koziel. 1992. Field Evaluation of transgenic tobacco containing a Bacillus thuringiensis insecticidal protein gene. J. Econ. Entomol. 85:1651–1659.Google Scholar
  224. Watt, K., J. Graham, S. C. Gordon, M. Woodhead, and R. J. McNicol. 1999. Current and future transgenic control strategies to vine weevil and other insect resistance in strawberry. J. Hort. Sci. & Biotechnol. 74:409–421.Google Scholar
  225. Whalon, M. E., D. L. Miller, R. M. Hollingworth, E. J. Grafius, and J.R. Miller. 1993. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol. 86:226–233.Google Scholar
  226. Williams, W. P., J. B. Sagers, J. A. Hanten, F. M. Davis, and P. M. Burkley. 1997. Transgenic corn evaluated for resistance to fall armyworm and southwestern corn borer. Crop Sci. 37:957–962.Google Scholar
  227. Wilson, F. D., H. M. Flint, W. R. Deaton, D. A. Fischhoff, F. J. Perlak, T. A. Armstrong, R. L. Fuchs, S. A. Berberich, N. J. Parks, and B. R. Stapp. 1992. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J. Econ. Entomol. 85:1516–1521.Google Scholar
  228. Wraight, C. L., A. R. Zangerl, M. J. Carroll, and M. R. Berenbaum. 2000. Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc. Nat. Acad. Sci. USA. 97:7700–7703.PubMedCrossRefGoogle Scholar
  229. Wright, D.J., M. Iqbal, and R.H.J. Verkerk. 1995. Resistance to Bacillus thuringiensis and abamectin in the diamondback moth, plutella xylostella: A major problem for integrated pest management. Mededelingen. Faculteit Landbouwkundige en toegepaste Biologische Wetenschappen Universiteit Gent 60(3B): 927–933.Google Scholar
  230. Wright, D. J., M. Iqbal, F. Granero, and J. Ferré, J. 1997. A change in a single midgut receptor in Plutella xylostella is only in part responsible for field resistance to Bacillus thuringiensis subspp. kurstaki and aizawai. Appl. Environ. Microbiol. 63:1814–1819.Google Scholar
  231. Wu, C., Y. Fan, C. Zhang, N. Oliva, and S. K. Datta. 1997. Transgenic fertile japonica rice plants expressing a modified cryIA(b) gene resistant to yellow stem borer. Plant Cell Rep. 17:129–132.CrossRefGoogle Scholar
  232. Wünn, J., A. Kloti, P. K. Burkhardt, G. C. G. Biswas, K. Launis, V. A. Iglesias, and I. Potrykus. 1996. Transgenic indica rice breeding line IR58 expressing a synthetic cryIA(beta) gene from Bacillus thuringiensis provides effective insect pest control. Bio-Technol. 14:171–176.Google Scholar
  233. Xu, D., Q. Xue, D. McElroy, Y. Mawal, V. A. Hilder, and R. Wu. 1996. Consititutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers reistance to two major rice insect pets. Mol. Breed. 2:167–173.Google Scholar
  234. Ye, G. Y., Q.-Y. Shu, H.-W. Yao, H.-R. Cui, X.-Y. Cheng, C. Hu, Y.-W. Xia, M.-W. Gao, and I. Altosaar. 2001. Field evaluation of resistance of transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner to stem borers. J. Econ. Entomol. 94:271–276.PubMedGoogle Scholar
  235. Yeh, K.-W., M.-I. Lin, S.-J. Tuan, Y.-M. Chen, C.-Y. Lin, and S.-S. Kao. 1997. Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Reports. 16:696–699.CrossRefGoogle Scholar
  236. Yorobe, J. M., C. B. Quicoy, E. P. Alcantara, and B. R. Sumayao. 2004. Impact assessment of Bt corn in the Philippines. University of the Philippines Los Banos, College, Laguna, Philippines.Google Scholar
  237. Yu, L., R.E. Berry, and B.A. Croft. 1997. Effects of Bacillus thuringiensis toxins in transgenic cotton and potato on Folsomia candida (Collembola: Isotomidae) and Oppia nitens (Acari: Oribatidae). J. Econ. Entomol. 90:113–118.Google Scholar
  238. Zhu, K. Y., J. E. Huesing, R. E. Shade, and L. L. Murdock. 1994. Cowpea trypsin inhibitor and resistance to cowpea weevil (Coleoptera: Bruchidae) in cowpea variety TVu-2027. Environ. Entomol. 23:987–991.Google Scholar

Copyright information

© Springer 2005

Personalised recommendations