Heterotrophic Protozoa from Hypersaline Environments

  • Gwen Hauer
  • Andrew Rogerson
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 9)


Great Salt Lake Hypersaline Environment Heterotrophic Flagellate Brown Tide Salt Pond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, S. (1980) Descriptive biochemistry and physiology of the Chrysophyceae (with some comparisons to Prymnesiophyceae), In: M. Levandowsky and S.H. Hutner (Eds.), Biochemistry and Physiology of Protozoa, Vol. 3. Academic Press, New York, pp. 117–169.Google Scholar
  2. Al Qassab, S., Lee, W.J., Murray, S. and Patterson, D.J. (2002) Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool. 41, 91–144.Google Scholar
  3. Al-Rasheid, K.A.S., Nilsson, J.R. and Larsen, H.F. (2001) Blepharisma intermedium Padmavathi, 1959 (Ciliophora: Heterotrichida) from Al Hasa inland hypersaline oasis in Saudi Arabia. Acta Protozool. 40, 63–69.Google Scholar
  4. Anderson, O.R. and Rogerson, A. (1995) Annual abundances and growth potential of gymnamoebae in the Hudson estuary with comparative data from the Firth of Clyde. Eur. J. Protistol. 31, 223–233.Google Scholar
  5. Avron, M. and Ben-Amotz, A. (1979) Metabolic adaptation of the alga Dunaliella to low water activity, In: M. Shilo (ed.), Strategies of Microbial Life in Extreme Environments. Verlag Chemie, Weinheim, pp. 83–91.Google Scholar
  6. Ayadi, H., Toumi, N., Abid, O., Medhioub, K., Hammami, M., Sime-Ngando, T., Amblard, C. and Sargos, D. (2002) Qualitative and quantitative study of phyto-and zooplankton communities in the saline ponds of Sfax, Tunisia. Revue des Sciences de l’Eau 15, 123–135.Google Scholar
  7. Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and Thingstad, F. (1983) The ecological role of water column microbes in the sea. Mar. Ecol. Progr. Ser. 10, 257–263.Google Scholar
  8. Baas-Becking, L.G.M. and Kaplan, I.R. (1956) The microbiological origin of the sulphur nodules of Lake Eyre. Trans. R. Soc. S. Austr. 79, 52–65.Google Scholar
  9. Bick, H. and Kunze, S. (1971) Eine Zusammenstellung von autökologischen und saprobiologisehen Befunden an Süßwasserciliaten. Int. Revue ges. Hydrobiol. 56, 337–384.Google Scholar
  10. Borowitzka, M.A., Borowitzka, L.J. and Kessley, D. (1990) Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2, 111–119.CrossRefGoogle Scholar
  11. Borowitzka, M.A. and Borowitzka, L.J. (1988) Dunaliella, In: M.A. Borowitzka and L.J. Borowitzka (eds.), Micro-Algal Biotechnology. Cambridge University Press, Cambridge, pp. 27–58.Google Scholar
  12. Brown, A.D. (1990) Microbial Water Stress Physiology. Principles and Perspectives. John Wiley & Sons, Chichester.Google Scholar
  13. Buskey, E.J., Wysor, B. and Hyatt, C. (1998) The role of hypersalinity in the persistence of the Texas brown tide in the Laguna Madre. J. Plankton Res. 20, 1553–1565.Google Scholar
  14. Butler, H. and Rogerson, A. (1995) Temporal and spatial abundance of naked amoebae (gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42, 724–730.Google Scholar
  15. Carpelan, L.H. (1957) Hydrobiology of the Alviso salt ponds. Ecology 38, 375–390.Google Scholar
  16. Corliss, J.O. (1998) Classification of protozoa and protists: the current status, In: G.H. Coombs, K. Vickerman, M.A. Sleigh and A. Warren (eds.), Evolutionary Relationships among Protozoa. Chapmann & Hall, London, pp. 409–447.Google Scholar
  17. Costello, M.J., Emblow, C. and White, R. (Eds.) (2001) European Register of Marine Species. A Checklist of the Marine Species in Europe and a Bibliography of Guides to their Identification. Publications Scientifiques du Musée National d’Histoire Naturelle, Paris, 40 pp.Google Scholar
  18. Cronkite, D.I., Neuman, J., Walker, D. and Pierce, S.K. (1991) The response of contractile and non-contractile vacuoles of Paramecium calkinsi to widely varying salinities. J. Protozool. 38, 565–573.PubMedGoogle Scholar
  19. Davis, J.S. (1978) Biological communities of a nutrient enriched salina. Aquat. Bot. 4, 23–42.CrossRefGoogle Scholar
  20. Debenay, J.P., Geslin, E., Eichler, B.B., Duleba, W., Sylvestre, F. and Eichler, P. (2001) Foraminiferal assemblages in a hypersaline lagoon, Araruama (R.J.) Brazil. J. Foramin. Res. 31, 133–151.Google Scholar
  21. Drainville, G. and Cagnon, A. (1973) Osmoregulation in Acanthamoeba castellanii. I. Variations of the concentrations of free intracellular amino acids and of the water content. Comp. Biochem. Physiol. 45A, 379–388.Google Scholar
  22. Dryl, S., Demar-Gervais, C. and Kubalski, A. (1982) Role of external cations in excitability of marine ciliate Fabrea salina. Acta Protozool. 21, 55–60.Google Scholar
  23. Elazari-Volcani, B. (1943) A dimastigamoeba in the bed of the Dead Sea. Nature 152, 275–277.Google Scholar
  24. Elazari-Volcani, B. (1944) A ciliate from the Dead Sea. Nature 154, 335–336.Google Scholar
  25. Esteban, G.F. and Finlay, B.J. (2003) Cryptic freshwater ciliates in a hypersaline lagoon. Protist 154, 411–418.PubMedCrossRefGoogle Scholar
  26. Fenchel, T. (1987) Ecology of protozoa. Science Technology Publishers, Madison, WI, 197 pp.Google Scholar
  27. Finlay, B.J. (1990) Physiological ecology of free-living protozoa. Adv. Microb. Ecol. 11, 1–34.Google Scholar
  28. Flowers, S. and Evans, F.K. (1966) The flora and fauna of the Great Salt Lake Region, Utah, In: H. Boyko (ed.), Salinity and Aridity. New Approaches to Old Problems. W. Junk, The Hague, pp. 367–393.Google Scholar
  29. Franzmann, P.D., Burton, H.R. and McMeekin, T.A. (1987) Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int. J. Syst. Bacteriol. 37, 27–34.CrossRefGoogle Scholar
  30. Gilmour, D. (1990) Halotolerant and halophilic microorganisms, In: C. Edwards (ed.), Microbiology of Extreme Environments. Open University Press, Milton Keynes, UK, pp. 147–177.Google Scholar
  31. Gaievskaia, N. (1925) Sur deux nouveaux infusores des mares salées-Cladotricha oltzowii nov. gen., nov. sp. Arch. Russ. Protistol. 4, 255–288.Google Scholar
  32. Garcia, C.M. and Neill, F.X. (1993) Seasonal change in a saline temporary lake (Fuente de Piedra, southern Spain), In: S.H. Hurlbert (ed.), Saline Lakes V. Kluwer Academic Publishers, Dordrecht, pp. 211–223.Google Scholar
  33. Golubic, S. (1980) Halophily and halotolerance in cyanophytes. Origins of Life 10, 169–183.CrossRefGoogle Scholar
  34. Goldman, C.R., Mason, D.T. and Hobbie, J.E. (1967) Two Antarctic desert lakes. Limnol. Oceanogr. 12, 295–310.CrossRefGoogle Scholar
  35. Grant, W.D. (1991) General view of halophiles, In: K. Horikoshi and W.D. Grant (eds.), Superbugs: Microorganisms in Extreme Environments. Japan Scientific Societies Press, Tokyo, pp. 15–37.Google Scholar
  36. Guixa-Boixareu, N., Calderon-Paz, J.I., Heldal, M., Bratbak, G. and Pedrós-Alió, C. (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11, 215–227.Google Scholar
  37. Hamburger, C. (1905) Zur Kenntnis der Dunaliella salina und einer Amöbe aus Salinenwasser von Cagliari. Arch. f. Protistenkd. 6, 111–130.Google Scholar
  38. Hauer, G., Rogerson, A. and Anderson, O.R. (2001) Platyamoeba pseudovannellida n. sp. A naked amoeba with wide salt tolerance isolated from the Salton Sea, California. J. Eukaryot. Microbiol. 48, 663–669.PubMedCrossRefGoogle Scholar
  39. Hurlbert, A.H., Sturm, K. and Hurlbert. S.H. (2001) Fish and fish eating birds at the Salton Sea: past trends and future prospects. American Society of Limnology (2001) Aquatic Sciences Meeting, Albuquerque, NM, USA Number 0005431.Google Scholar
  40. Imhoff, J.F., Sahl, H., Soliman, G. and Trüper, H.G. (1979) The Wadi Natrun; chemical composition and microbial mass developments in alkaline brines and eutrophic desert lakes. Geomicrobiol. J. 1, 219–234.CrossRefGoogle Scholar
  41. Jaschof, H. and Schwartz, W. 1961. Untersuchungen über Lebensgemeinschafte halophiler Mikroorganismen II. Über die Mikrobenassoziationen einer alkalischen Sole aus dem Hoctal von Mexiko. Zeitschr. f. Allgem. Mikrobiol. 1, 258–273.Google Scholar
  42. Javor, B.J. (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol. Oceanogr. 12, 1–7.Google Scholar
  43. Javor, B. (1989) Hypersaline Environments, Microbiology and Biogeochemistry. Springer-Verlag, Berlin, 328 pp.Google Scholar
  44. Jellison, R. (1996) Organic matter accumulation in sediments of hypersaline Mono Lake during a period of changing salinity. Limnol. Oceanogr. 41, 1539–1544.CrossRefGoogle Scholar
  45. Jones, D.T. (1944) Two protozoans from the Great Salt Lake. Bull. University of Utah 35, 1–11.Google Scholar
  46. Kahl, A. (1928) Die Infusorien (Ciliata) der Olestor Salzwasserstellen. Arch. f. Hydrobiol. 19, 189–246.Google Scholar
  47. Kahl, A. (1930) Wimpertiere oder Ciliaten (Infusoria), In: F. Dahl, Die Tierwelt Deutschlands, Teil 18, 21, 25, 30. Gustav Fischer Verlag, Jena.Google Scholar
  48. Kauss, H. (1977) Biochemistry of osmotic regulation. Int. Rev. Biochem. 13, 120–140.Google Scholar
  49. Kirkpatrick, R. (1934) The Life of Great Salt Lake, With Special Reference to the Algae. M.Sc. thesis, University of Utah, Salt Lake City, 30 pp.Google Scholar
  50. Kudo, R. (1966) Protozoology. 5th ed. Charles C. Thomas, Springfield, IL., 1174 pp.Google Scholar
  51. Kushner, D.J. (1993) Microbial life in extreme environments, In: T.E. Ford (ed.), Aquatic Microbiology: an Ecological Approach. Blackwell Scientific Publications, Cambridge, MA, pp. 383–407.Google Scholar
  52. Larsen, H. (1980) Ecology of hypersaline environments, In: A. Nissenbaum (ed.), Hypersaline Brines and Evaporitic Environments. Developments in Sedimentology 28, Elsevier Scientific, Amsterdam, pp. 23–39.Google Scholar
  53. Laybourn-Parry, J., Quayle, W. and Henshaw, T. (2002) The biology and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar Biol. 25, 542–552.CrossRefGoogle Scholar
  54. Laybourn-Parry, J. (2002) Survival mechanisms in Antarctic Lakes. Phil. Trans. R. Soc. London B 357, 863–869.Google Scholar
  55. Mast, S.O. and Hopkins, D.L. (1941) Regulation of the water content of Amoeba mira and adaptation to changes in the osmotic concentrations of the surrounding medium. J. Cell. Comp. Physiol. 41, 31–48.Google Scholar
  56. Mianping, Z., Hurlbert, S.H. and Williams, W.D. (1998) Saline lakes VI. Opening Ceremony Sixth International Symposium on Salt Lakes, Beijing, P.R. China, Hydrobiologia 381, ix–x.Google Scholar
  57. Mihailowitsch, B. and Wilbert, N. (1990) Bakuella salinarum nov. spec. und Pseudokeronopsis ignea nov. spec. (Ciliata, Hypotrichida) aus einem solebelasteten Fließgewässer des östilchen “Münsterlandes” BRD. Arch. Protistenkd. 138, 207–219.Google Scholar
  58. Namyslowski, B. (1913) Über unbekannte halophile Mikroorganismen aus dem Innern des Salzbergwerkes Wieliczka. Bull. Int. Aced. Sci. Krakow, Series B, 3/4, 88–104.Google Scholar
  59. Nissenbaum, A. (1975) The microbiology and biogeochemistry of the Dead Sea. Microb. Ecol. 2, 139–161.CrossRefGoogle Scholar
  60. Noel, D. (1984) Les diatomées des saumures et des sediments de surface du Salin de Bras del Port. Rev. Invest. Geol. 38/39, 79–107.Google Scholar
  61. Oren, A. (1999) Microbiological studies in the Dead Sea: future challenges toward understanding of life at the limit of salt concentrations. Hydrobiologia 405, 1–9.CrossRefGoogle Scholar
  62. Oren, A. (2000) Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Indust. Microbiol. Biotechnol. 28, 56–63.Google Scholar
  63. Oren, A. (2002) Halophilic Microorganisms and their Environments. Kluwer Academic Publishers, Dordrecht, 575 pp.Google Scholar
  64. Pack, D.A. (1919) Two ciliata of Great Salt Lake. Biol. Bull. 36, 273–282.Google Scholar
  65. Page, F.C. (1976) An Illustrated Key to Freshwater and Soil Amoebae. Freshwater Biological Association, Ambleside, Cumbria, 155 pp.Google Scholar
  66. Page, F.C. (1983) Marine Gymnamoebae. Institute of Terrestrial Ecology, Culture Collection of Algae and Protozoa, Cambridge, England.Google Scholar
  67. Page, F.C. (1988) A New Key to Freshwater and Soil Gymnamoebae. Culture Collection of Algae and Protozoa, Freshwater Biological Association, Ambleside, Cumbria, 122 pp.Google Scholar
  68. Park, J.S., Kim, H., Choi, D.H. and Cho, B.C. (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat. Microb. Ecol. 33, 173–179.Google Scholar
  69. Patterson, D.J. (1980) Contractile vacuoles and associated structures: their organization and function. J. Physiol. 493, 187–198.Google Scholar
  70. Patterson, D.J. and Simpson, A.G.B. (1996) Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur. J. Protistol. 32, 423–448.Google Scholar
  71. Patterson, D.J., Rogerson, A. and Vørs, N. (2002) Class Heterolobosea, In: J.J. Lee, G.F. Leedale and P. Bradbury (eds.), An Illustrated Guide to the Protozoa, 2nd ed. Society of Protozoologists, Lawrence, Kansas, pp. 1104–1111.Google Scholar
  72. Pavlova, P., Kostandinka, M., Tanev, S. and Davis, J.S. (1998) Observations on a solar saltworks near Burgas, Bulgaria. Int. J. Salt Lake Res. 7, 357–368.Google Scholar
  73. Pedrós-Alió, C., Calderón-Paz, J.I., MacLean, M.H., Medina, G., Marrase, C., Gasol, J.M. and Guixa-Boixareu, N. (2000) The microbial food web along salinity gradients. FEMS Microbiol. Ecol. 32, 143–155.PubMedGoogle Scholar
  74. Peréz-Ruzafa, A., Gilabert, J., Gutíerrez, J.M., Fernández, A.I., Marcos, C. and Sabah, S. (2002). Evidence of a planktonic food web response to changes in nutrient input. Hydrobiologia 475/476, 359–369.Google Scholar
  75. Por, F.D. (1972) Hydrobiological notes on the high salinity waters of the Sinai Peninsula. Mar. Biol. 14, 111–119.CrossRefGoogle Scholar
  76. Por, F.D. (1980) A classification of hypersaline waters, based on trophic criteria. Mar. Ecol. 1, 121–131.Google Scholar
  77. Post, F.J. (1977) The microbial ecology of the Great Salt Lake. Microb. Ecol. 3, 143–165.CrossRefGoogle Scholar
  78. Post, F.J., Borowitzka, L.J., Borowitzka, M.A., Mackay, B. and Moulton, T. (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105, 95–113.CrossRefGoogle Scholar
  79. Ramos-Cormenzana, A. (1991) Halophilic organisms and their environment, In: F. Rodriguez-Valera (ed.), General and Applied Aspects of Halophilic Microorganisms. Plenum Press, New York, pp. 15–24.Google Scholar
  80. Read, L.K., Margulis, L., Stolz, J., Obar, L. and Sawyer, T.K. (1983) A new strain of Paratetramitus jugosus from Laguna Figueroa, Baja California, Mexico. Biol. Bull. 165, 241–264.Google Scholar
  81. Reddy, Y.J.R. (1972) A Description of Morphology of a New Species of Euplotes from Great Salt Lake, Utah. MSc. Thesis, University of Utah, Salt Lake City, 31 pp.Google Scholar
  82. Roberts, D. (1998) Eukaryotes in extreme environments: Extreme eukaryotes., Department of Zoology, The Natural History Museum, London, SW7, 5BD, U.K.Google Scholar
  83. Rodriguez-Valera, F., Ventosa, A., Juez, G. and Imhoff, J.F. (1985) Variation of environmental features and microbial populations with salt concentration in a multipond saltern. Microb. Ecol. 11, 107–115.CrossRefGoogle Scholar
  84. Rodriguez-Valera, F., Ruiz-Berraquero, F. and Ramos-Cormenzana, A. (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 7, 235–243.CrossRefGoogle Scholar
  85. Rogerson, A. and Goodkov, A. (2001) Naked amoebae, In: M.J. Costello, C. Emblow and R. White (eds.), European Register of Marine Species. A Checklist of the Marine Species in Europe and a Bibliography of Guides to their Identification. Publications Scientifiques du Musée National d’Histoire Naturelle, Paris.Google Scholar
  86. Rogerson, A. and Gwaltney, C. (2000) High numbers of naked amoebae in the planktonic waters of a mangrove stand in Southern Florida, U.S.A. J. Eukaryot. Microbiol. 47, 235–241.Google Scholar
  87. Rogerson, A. and Hauer, G. (2002) Naked amoebae (Protozoa) of the Salton Sea, California. Hydrobiologia 473, 161–177.CrossRefGoogle Scholar
  88. Rogerson. A. and Laybourn-Parry, J. (1992) The abundance of marine naked amoebae in the water column of the Clyde estuary. Estuarine Coastal Shelf Sci. 34, 187–196.Google Scholar
  89. Ruinen, J. (1938) Notizen über Salzflagellaten II. Über die Verbreitung der Salzflagellaten. Arch. f. Protistenkd. 90, 210–258.Google Scholar
  90. Simpson, A.G.B. and Patterson, D.J. (1996) Ultrastructure and identification of the predatory flagellate Colpodella pugnax Cienkowski (Apicomplexa) with a description of Colpodella turpis (n. p.) and a review of the genus. Syst. Parasitol. 33, 181–198.CrossRefGoogle Scholar
  91. Smirnov, A.V. (2001) Vannella ebro n. sp. (Lobosea, Gymnamoebia) isolated from cyanobacterial mats in Spain. Eur. J. Protistol. 37, 147–153.Google Scholar
  92. Smith, D.W. (1978) Water relations of microorganisms in nature, In: D.J. Kushner (ed.), Microbial Life in Extreme Environments. Academic Press, London, pp. 369–377.Google Scholar
  93. Stephens, D.W. (1990) Changes in lake levels, salinity and the biological community of Great Salt Lake, Utah, 1847–1987. Hydrobiologia 197, 139–146.CrossRefGoogle Scholar
  94. Tong, S.M., Vørs, N. and Patterson, D.J. (1997) Heterotrophic flagellates, centrohelid heliozoan and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol. 18, 91–106.CrossRefGoogle Scholar
  95. Ventosa, A. (ed.) (2004) Halophilic Microorganisms. Springer-Verlag, Berlin, 349 pp.Google Scholar
  96. Volcani, B. (1944) The microorganisms of the Dead Sea, In: Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann. Collective Volume. Daniel Sieff Research Institute, Rehovoth, pp. 71–85.Google Scholar
  97. Vorhies, C.T. (1917) Notes of the fauna of the Great Salt Lake. American Naturalist 51, 494–499.CrossRefGoogle Scholar
  98. Wilbert, N. and Kahan, D. (1981) Ciliates of Solar Lake on the Red Sea shore. Arch. f. Protistenkd. 124, 70–95.Google Scholar
  99. Wilbert, N. (1995) Benthic ciliates of salt lakes. Acta Protozool. 34, 271–288.Google Scholar
  100. Winkler, D.W. (ed.) (1977) An ecological study of Mono Lake. California Institute for Ecology Publications 12, University of California, Davis, 190 pp.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Gwen Hauer
    • 1
  • Andrew Rogerson
    • 1
  1. 1.Oceanographic Center of Nova Southeastern UniversityDania BeachUSA

Personalised recommendations