Advertisement

Glacier Recession in the Peruvian Andes: Climatic Forcing, Hydrologic Impact and Comparative Rates Over Time

  • Bryan G. Mark
  • Geoffrey O. Seltzer
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

Tropical glaciers are intriguing and apparently rapidly disappearing components of the cryosphere that literally crown a vast ecosystem of global significance. Half of the Earth’s surface area lies between the tropics of Capricorn and Cancer, wherein a staggering 75% of the global population resides (Thompson 2000). Tropical glaciers are highly sensitive to climate changes over different temporal and spatial scales, notably ENSO, and are important hydrological resources in tropical highlands (Francou et al. 1995; 2000; this volume; Wagnon et al. 2001; Kaser and Osmaston 2002). Moreover, resolving the complex dynamics and variability of the tropical climate over longer time periods presents important goals to the global modelling community. Compiling an accurate understanding of the timing and climate response of tropical glaciers in the past is a crucial source of palaeoclimatic information for the validation and comparison of climate models (e.g. Farrera et al. 1999; Hostetier and Clark 2000; Porter 2001; Harrison et al. 2002; Seltzer et al. 2002). Deciphering the relative strength of different climatic forcing mechanisms on tropical glacier behaviour and quantifying hydrological changes associated with glacier recession are therefore relevant to interpreting the past climate and predicting the impact of future climate changes. Much scientific, social and political attention now concerns future changes in climate, with temperature change predominant.

Keywords

Climate forcing Glacier recession Hydrology Peruvian Andes Rates of deglaciation Terrain modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, A. (1998). A documentation of glacier tongue variations and lake developments in the Cordillera Bianca, Peru. Zeitschrift für Gletscherkunde und Glazialgeologie 34, 1–36.Google Scholar
  2. Barry, R. G., and Seimon, A. (2000). Research for mountain area development: Climatic fluctuations in the mountains of the Americas and their significance. Ambio 29, 364–370.Google Scholar
  3. Brecher, H., and Thompson, L. G. (1993). Measurement of the retreat of Qori Kalis glacier in the tropical Andes of Peru by terrestrial photogrammetry. Photogrammetric Engineering and Remote Sensing 59, 1017–1022.Google Scholar
  4. Chen, J., and Ohmura, A. (1990). Estimation of Alpine glacier water resources and their change since the 1870s. “Hydrology in mountainous regions,” International Association of Hydro logical SciencesPublication 193, 127–135.Google Scholar
  5. Dyurgerov, M. B., and Meier, M. F. (2000). Twentieth century climate change: Evidence from small glaciers. Proceedings of the National Academy of Science 97, 1406–1411.CrossRefGoogle Scholar
  6. Farrera, I., Harrison, S. P., Prentice, I. C, Ramstein, G., Guiot, J., Bartlein, P. J., Bonnefille, R., Bush, M., Cramer, W., von Grafenstein, U., Holmgren, K., Hooghiemstra, H., Hope, G., Jolly, D., Lauritzen, S.-E., Ono, Y., Pinot, S., Stute, M., and Yu, G. (1999). Tropical climates at the Last Glacial Maximum: Anew synthesis of terrestrial palaeoclimate data: I. Vegetation, lake-levels and geochemistry. ClimateDynamics 15, 823–856.Google Scholar
  7. Francou, B., Ribstein, P., Savaria, R., and Tiriau, E. (1995). Monthly balance and water discharge of an inter-tropical glacier: Zongo Glacier, Cordillera Real, Bolivia, 16°S. Journal of Glaciology 41, 61–67.Google Scholar
  8. Francou, B., Ramirez, E., Cáceres, B., and Mendoza, J. (2000). Glacier evolution in the tropical Andes during the last decades of the 20th century: Chacaltaya, Bolivia, and Antizana, Ecuador. Ambio 29, 416–422.Google Scholar
  9. Goodman, A. Y, Rodbell, D. T., Seltzer, G. O., and Mark, B. G. (2001). Subdivision of glacial deposits in southeastern Peru based on pedogenic development and radiometric ages. Quaternary Research 56, 31–50.CrossRefGoogle Scholar
  10. Harrison, S. P., Braconnot, P., Joussaume, S., Hewitt, C, and Stouffer, R. J. (2002). Comparison of palaeoclimate simulations enhances confidence in models. Eos 83, 447.CrossRefGoogle Scholar
  11. Hastenrath, S., and Ames, A. (1995a). Recession of Yanamarey glacier in the Cordillera Bianca, Peru, during the 20th century. Journal of Glaciology 41, 191–196.Google Scholar
  12. Hastenrath, S., and Ames, A. (1995b). Diagnosing the imbalance of Yanamarey glacier in the Cordillera Bianca of Peru. Journal of Geophysical Research 100, 5105–5112.CrossRefGoogle Scholar
  13. Hastenrath, S., and Kruss, P. D. (1992). The dramatic retreat of Mount Kenya’s glaciers between 1963 and 1987: Greenhouse forcing. Annals of Glaciology 16, 127–133.Google Scholar
  14. Hostetler, S., and Clark, P. U. (2000). Tropical climate at the Last Glacial Maximum inferred from glacier mass-balance modelling. Science 290, 1747–1750.CrossRefGoogle Scholar
  15. Kaser, G., and Georges, Ch. (1997). Changes in the equilibrium-line altitude in the tropical Cordillera Bianca, Peru, 1930–50, and their spatial variations. Annals of Glaciology 24, 344–349.Google Scholar
  16. Kaser, G., and Osmaston, H. (2002). “Tropical Glaciers.” International Hydrology Series, Cambridge University Press.Google Scholar
  17. Kerr, A. (1993). Topography, climate and ice masses: A review. Terra Nova 5, 332–342.CrossRefGoogle Scholar
  18. Mark, B. G., Seltzer, G. O., Rodbell, D. T., and Goodman, A. Y (2002). Rates of deglaciation during the Last Glaciation and Holocene in the Cordillera Vilcanota-Quelccaya Ice Cap Region, Southeastern Peru. Quaternary Research 57, 287–298.CrossRefGoogle Scholar
  19. Mark, B. G., and Seltzer, G. O. (accepted). Tropical glacial meltwater contribution to stream discharge: A case study in the Cordillera Bianca, Peru. Journal of Glaciology.Google Scholar
  20. Mark, B. G. and Seltzer, G. O. (in prep.). Forcing mechanisms behind recent deglaciation in the Cordillera Bianca, Peru, from 1962–1999.Google Scholar
  21. Oerlemans, J. and Knap, W. H. (1998). A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Southwest Switzerland. Journal of Glaciology 44, 231–238.Google Scholar
  22. Petersen, U., Sassarini, L., and Plenge, R. (1969). Glaciar Yanasinga (Central Peru): 24 years of measurements. Journal of Glaciology 8, 487–489.Google Scholar
  23. Porter, S. (2001). Snowline depression in the tropics during the Last Glaciation. Quaternary ScienceReviews 20, 1067–1091.Google Scholar
  24. Seltzer, G. O., Rodbell, D. T., Baker, P. A., Fritz, S. C, Tapia, P. M., Rowe, H. D., and Dunbar, R. B. (2002). Early warming of tropical South America at the last glacial-interglacial transition. Science 296, 1685–1686.CrossRefGoogle Scholar
  25. Seltzer, G. O. (1990). Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes. QuaternaryScience Reviews 9, 137–152.CrossRefGoogle Scholar
  26. Thompson, L. G. (2000). Ice core evidence for climate change in the Tropics: Implications for our future. Quaternary Science Reviews 19, 19–35.CrossRefGoogle Scholar
  27. Thompson, L. G., Mosley-Thompson, E., and Henderson, K. A. (2000). Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science 15, 377–394.CrossRefGoogle Scholar
  28. Wagnon, P., Ribstein, P., Francou, B., and Pouyard, B. (1999). Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. Journal of Geophysical Research 104, 3907–3923.CrossRefGoogle Scholar
  29. Wagnon, P., Ribstein, P., Francou, B., and Sicart, J. E. (2001). Anomalous heat and mass budget of Glaciar Zongo, Bolivia, during the 1997/98 El Niño year. Journal of Glaciology 47, 21–28.CrossRefGoogle Scholar
  30. Whitfield, J. (2001). “Tropical glaciers in retreat.” Nature Science Update, February 19, 2001 (http://www.nature.com/nsu/010222/010222-14.html).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Bryan G. Mark
    • 1
    • 2
  • Geoffrey O. Seltzer
    • 3
  1. 1.Max Planck Institute for BiogeochemistryJenaGermany
  2. 2.c/o Department of GeographyUniversity of GlasgowGlasgowUK
  3. 3.Department of Earth SciencesSyracuse UniversitySyracuseUSA

Personalised recommendations