Advertisement

Intermediate-Temperature SOFC Electrolytes

  • N. Sammes
  • Y. Du
Part of the NATO Science Series book series (NAII, volume 202)

Abstract

The electrolyte for solid oxide fuel cells (SOFC’s) must be stable in both reducing and oxidizing environments and have sufficient ionic, as well as low electronic, conductivity at the operation temperature. Present SOFC’s have extensively used stabilized zirconia, especially yttria stabilized zirconia, as the electrolyte. However, oxide ion conductors, such as doped ceria and perovskite-type oxides, have also been proposed as the electrolyte materials for SOFC’s, especially for reduced-temperature of operation (600°C to 800°C), now known as intermediate-temperature solid oxide fuel cells (IT-SOFC).

Key words

Zirconia Ceria Lanthanum Gallate Intermediate Temperature SOFC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    see, for example, Singhal, S., and Kendall, K, Editors, “High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, Elsevier (2003).Google Scholar
  2. [2]
    Etsell, T.H., and Flengas, Chem. Rev., (1970) 70, 339.CrossRefGoogle Scholar
  3. [3]
    Minh, N.Q., Takahashi, T., in “Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam (1995).Google Scholar
  4. [4]
    Ishihara, T., Matsuda, H. and Takita, Y., J. Am. Chem. Soc., (1994) 116, 3801.Google Scholar
  5. [5]
    Steele, B.C.H., in High Conductivity Solid Ionic Conductors, ed: T. Takahashi, World Scientific Press, Singapore (1989).Google Scholar
  6. [6]
    Baker, W.W., Knop, O., Proc. Brit. Ceram. Soc., (1971) 19, 15.Google Scholar
  7. [7]
    Hohnke, D.K., in Fast Ion Transport in Solids, eds: P. Vashista, J.N. Mundy, and G.K. Shenoy, North Holland, Amsterdam (1971).Google Scholar
  8. [8]
    Carter, R.E., and Roth, W.L., in Electromotive Force Measurements in High Temperature Systems, ed: C.L. Alchok, I.M.M., london (1968).Google Scholar
  9. [9]
    Kilner, J.A., and Brook, R.J., Solid State Ionics, (1982) 6, 237.Google Scholar
  10. [10]
    Nowick, A.S., Comments Solid State Phys., (1979) 9, 85Google Scholar
  11. [11]
    Kilner, J.A., and Steele, B.C.H., in Nonstoichiometric Oxides, ed: O.T. Sorenson, Academic Press (1981).Google Scholar
  12. [12]
    Yamamoto, O., Electrochemica Acta, (2000) 45, 2423CrossRefGoogle Scholar
  13. [13]
    Claussen, N., Ruhle, M. and Heuer, A.H., Science and Technology of Zirconia II, in Advances in Ceramics. 1984, American Ceramic Society: Columbus, OH. p. 555.Google Scholar
  14. [14]
    Steele, B.C.H., J. Mater. Sci., (2001) 36(5), 1053.CrossRefGoogle Scholar
  15. [15]
    Badwal, S.P.S., Solid State Ionics, (1992) 52, 23.CrossRefGoogle Scholar
  16. [16]
    Nernst, W., Zeischrift fur Elektrochemie, (1899) 6, 41.Google Scholar
  17. [17]
    Nernst, W., “Material for electric-lamp glowers,” USA, US patent No.: U 00685730, 1901.Google Scholar
  18. [18]
    Hooger, G., ed. Fuel cell technology handbook. CRC Press. 2003.Google Scholar
  19. [19]
    Estell, T.H. and Flengas, N., Chemical Reviews, (1970) 70(3), 340.Google Scholar
  20. [20]
    Scott, H.G., J. Mater. Sci., (1975) 10, 1527.Google Scholar
  21. [21]
    Badwal, S.P.S. and Foger, K., Ceramics International, (1996) 22, 257.CrossRefGoogle Scholar
  22. [22]
    Badwal, S.P.S., Solid State Ionics, (2001) 143, 39.CrossRefGoogle Scholar
  23. [23]
    Somiya, S., Yamamoto, N. and Yanagida, H., Science and technology of zirconia III, in Advances in Ceramics. 1988, American Ceramic Society: Columbus, OH.Google Scholar
  24. [24]
    Heuer, A.H. and Hobbs, L.W., Science and technology of circonia, in Advances in Ceramics. 1981, American Ceramic Society: Columbus, OH.Google Scholar
  25. [25]
    Bredikhin, S., Maeda, K. and Awano, M., Solid State Ionics, (2001) 144(1–2), 1.Google Scholar
  26. [26]
    Feighery, A.J. and Irvine, J.T.S., Solid State Ionics, (1999) 121, 209.CrossRefGoogle Scholar
  27. [27]
    Yamamoto, O., Arachi, Y., Takeda, Y., Imanishi, N., Mizutani, Y., Kawai, M., and Nakamura, Y., Solid State Ionics, (1995) 79, 137.CrossRefGoogle Scholar
  28. [28]
    Mogensen, M., Sammes, N.M., Tompsett, G.A., Solid State Ionics, (2000) 129, 63CrossRefGoogle Scholar
  29. [29]
    Steele, B.C.H., Solid State Ionics, (2000) 129, 95Google Scholar
  30. [30]
    Yahiro, H., Eguchi, Y., Eguchi, K., and Arai, H., J. Appl. Electrochem., (1988) 18, 527.CrossRefGoogle Scholar
  31. [31]
    Butler, V., Catlow, C.R.A., Fender, B.E.F., and Harding, J.H., Solid State Ionics, (1983) 8, 109.CrossRefGoogle Scholar
  32. [32]
    Godickemeier, M., and Gauckler, L.J., J. Electrochem. Soc. (1998) 145, 414.Google Scholar
  33. [33]
    Godickemeier, M., Sasaki, K., and Gauckler, L.J., J. Electrochem. Soc. (1997) 144, 1635.Google Scholar
  34. [34]
    Huang, K., Tichy, R.S. and Goodenough, J.B., J. Am. Ceram. Soc., (1998) 81(10), 2565.Google Scholar
  35. [35]
    Huang, K., Tichy, R.S. and Goodenough, J.B., “J. Am. Ceram. Soc., (1998) 81(10), 2576.Google Scholar
  36. [36]
    Ishihara, T., Matsuda, H. and Takita, Y., J. Am. Chem. Soc., (1994) 116, 3801.Google Scholar
  37. [37]
    Feng, M. and Goodenough, J.B., Eur. J. Solid State Inorg. Chem., (1994) t31(8–9), 663.Google Scholar
  38. [38]
    Drennan, J., Zelizko, V., Hay, D., Ciacchi, F.T., Rajendran, S. and Badwal, S.P.S., J. Mater. Chem., (1997) 7(1), 79.CrossRefGoogle Scholar
  39. [39]
    Marti, W., J. Phys.: Condens. Matter, (1994) 6, 127.CrossRefGoogle Scholar
  40. [40]
    Slater, P.R., Irvine, J.T.S., Ishihara, I. and Takita, Y., Solid State Ionics, (1998) 107, 319.CrossRefGoogle Scholar
  41. [41]
    Lerch, M., Boysen, H. and Hansen, T., J. Phys. and Chem. Solids, (2001) 62, 445.Google Scholar
  42. [42]
    Matraszek, A., Kobertz, D., Singheiser, L. and Hilpert, K., “Thermodynamic studies of perovskietes on the basis of LaGaO3 and implications for SOFC.” in Seventh International Symposium on Solid Oxide Fuel Cells (SOFC VII). 2001. Tsukuba, Japan: The Electrochemical Society, Inc., p. 319.Google Scholar
  43. [43]
    Feng, M., Goodenough, J.B., Huang, K. and Milliken, C., J. Power Sources, (1996) 63, 47.Google Scholar
  44. [44]
    Huang, P.N. and Petric, A., J. Electrochem. Soc., (1996) 143(5), 1644.Google Scholar
  45. [45]
    Polini, R., Pamio, A. and Traversa, E., “Sol-gel syntheses and phase purity of La1−xSrxGa1−yMgyO3−z solid electrolytes.” in Eighth International Symposium on Solid Oxide Fuel Cells (SOFC VIII). 2003. Paris, France, p. 324.Google Scholar
  46. [46]
    Huang, K., Feng, M. and Goodenough, J.B., J. Am. Ceram. Soc., (1996) 79(4), 1100.CrossRefGoogle Scholar
  47. [47]
    Pechini, M.P., “Method of preparing lead and alkaline earth titanaties and niobates and coating method using the same to form a capacitor,” USA, US patent No.: 3330697, 1967.Google Scholar
  48. [48]
    Djurado, E. and Labeau, M., J. European Ceramic Soc., (1998) 18, 1397.Google Scholar
  49. [49]
    Tao, S., Poulsen, F.W., Meng, G. and Orensen, O.T.S., J. Mater. Chem., (2000) 10, 1829.CrossRefGoogle Scholar
  50. [50]
    Nakayama, T. and Suzuki, M., “Current status of SOFC R&D program at NEDO.” in Seventh International Symposium on Solid Oxide Fuel Cells (SOFC VII). 2001. Tsukuba, Japan: The Electrochemical Society, Inc., p. 8.Google Scholar
  51. [51]
    Yamaji, K., Xiong, Y., Horita, T., Sakai, N. and Yokokawa, H., “Characterization of (La0.9Sr0.1)1+x(Ga0.8Mg0.2)O3−z electrolytes with nonstoichiometric compositions.” in Seventh International Symposium on Solid Oxide Fuel Cells (SOFC VII). 2001. Tsukuba, Japan: The Electrochemical Society, Inc., p. 413–421Google Scholar
  52. [52]
    Ishihara, T., Shibayama, T., Honda, M., Nishiguchi, H. and Takita, Y., Chem. Commun., (1999): p. 1227.Google Scholar
  53. [53]
    Ishihara, T., Shibayama, T., Honda, M., Nishiguchi, H. and Takita, Y., J. Electrochem. Soc., (2000) 147, 1332.Google Scholar
  54. [54]
    Sammes, N.M., Keppeler, F.M., Nafe, H. and Aldinger, F., J. Am. Ceram. Soc., (1998) 81(12), 3104.Google Scholar
  55. [55]
    Hayashi, H., Suzuki, M. and Inaba, H., Solid State Ionics, (2000) 128, 131.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • N. Sammes
    • 1
  • Y. Du
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutUSA
  2. 2.Connecticut Global Fuel Cell CenterUniversity of ConnecticutStorrsUSA

Personalised recommendations