Whispering Gallery Modes in Hexagonal Zinc Oxide Micro- and Nanocrystals

  • Thomas Nobis
  • Evgeni M. Kaidashev
  • Andreas Rahm
  • Michael Lorenz
  • Marius Grundmann
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 194)


The resonator properties of zinc oxide (ZnO) micro- and nanocrystals grown by a novel high pressure pulsed laser deposition process have been investigated at room temperature by cathodoluminescence (CL), spatially resolved CL-imaging and polarization resolved micro-photoluminescence (μ-PL) within the visible spectral range. The spectra exhibit a series of comparatively sharp and almost equidistant resonance lines. Using a simple plane wave interference model and taking into account the spectral characteristic n(ω) of the refractive index of ZnO, we can unambiguously attribute those lines to whispering gallery modes (WGMs) of a two dimensional hexagonal resonator. The predicted resonator diameters agree well with the measured crystal sizes. Tapered, high aspect ratio ZnO nanoneedles furthermore allow systematic investigations of the WGMs as a function of cavity diameter D down to zero. Hence, the transition from a multi-mode to a single mode cavity is directly observed. μ-PL experiments demonstrate that the WGMs are mainly TM polarized.

Key words

Whispering gallery modes nanostructure microcrystal nanocavity polarization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, Appl. Phys. Lett. 60, 289 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    S. Chang, N.B. Rex, R.K. Chang, G. Chong, and L.J. Guido, Appl. Phys. Lett. 75, 166 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    K.J. Luo, J.Y. Xu, H. Cao, Y. Ma, S.H. Chang, S.T. Ho, and G.S. Solomon, Appl. Phys. Lett. 77, 2304 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    X. Liu, W. Fang, Y. Huang, X.H. Wu, S.T. Ho, H. Cao, and R.P.H. Chang, Appl. Phys. Lett. 84, 2488 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A.F.J. Levi, R.E. Slusher, S.L. McCall, S.J. Pearton, and W.S. Hobson, Appl. Phys. Lett. 62, 2021 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Spillane, T.J. Kippenberg, and K.J. Vahala, Nature 415, 621 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    M. V. Artemyev, U. Woggon, R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    I. Braun, G. Ihlein, F. Laeri, J.U. Nöckel, G. Schulz-Ekloff, F. Schüth, U. Vietze, Ö. Weiss, and D. Wöhrle, Appl. Phys. B 70, 335 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    U. Vietze, O. Krauß, F. Laeri, G. Ihlein, F. Schüth, B. Limburg, and M. Abraham, Phys. Rev. Lett. 81, 4628 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    J. D. Jackson, Classical electrodynamics (Wiley, New York, 1999).zbMATHGoogle Scholar
  11. 11.
    J.U. Nöckel, “2-d Microcavities: Theory and Experiments”, in Cavity-Enhanced Spectroscopies, edited by R.D. van Zee and J.P. Looney, (Academic Press, San Diego, 2002) pp. 185–226.Google Scholar
  12. 12.
    N.S. Kapany and J.J. Burke, “Optical Waveguides”, (Academic Press, New York, 1972)Google Scholar
  13. 13.
    S.-B. Lee, J.H. Lee, J.S. Chang, H.J. Moon, S.W. Kim, and K. An, Phys. Rev. Lett 88, 033903 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A.D. Stone, J. Faist, D.L. Sivco, and A.Y. Cho, Science 280, 1556 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    M. Lohmeyer, Opt. Quant. Electron. 34, 541 (2002).CrossRefGoogle Scholar
  16. 16.
    J. Wiersig, Phys. Rev. A 67, 023807 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    J. Wiersig, J. Opt. A. 5, 53 (2003).ADSGoogle Scholar
  18. 18.A.
    M. Morales and C. M. Lieber, Science 279, 208 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    M. Lorenz et al., unpublished.Google Scholar
  20. 20.
    R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz, J. Lenzner, E.M. Kaidashev, M. Lorenz, A. Rahm, H.C. Semmelhack, and M. Grundmann, Appl. Phys. Lett. 82, 2260 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    J. Christen, M. Grundmann, and D. Bimberg, J. Vac. Sci. Technol. B 4, 2358 (1991).CrossRefGoogle Scholar
  22. 22.
    Th. Nobis, E.M. Kaidashev, A. Rahm, M. Lorenz, J. Lenzner, and Marius Grundmann, Nano Lett. 4, 797 (2004).CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Thomas Nobis
    • 1
  • Evgeni M. Kaidashev
    • 1
  • Andreas Rahm
    • 1
  • Michael Lorenz
    • 1
  • Marius Grundmann
    • 1
  1. 1.Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik IIUniversität LeipzigLeipzigGermany

Personalised recommendations