Advertisement

Tree Species Management and Nitrate Contamination of Groundwater: A Central European Perspective

  • Andreas Rothe
Part of the NATO Science Series IV: Earth and Environmental Sciences book series (NAIV, volume 55)

Abstract

Nitrate concentrations in seepage water from pristine forests usually are very low, regardless of species composition. In most parts of Europe, anthropogenic nitrogen deposition has led to increased nitrate leaching from forests, and the rates of nitrate leaching in seepage water may be influenced by the dominant tree species. Spruce forests have a higher leaf area than beech forests, and also maintain high leaf area throughout the year. This leads to higher rates of N deposition from the atmosphere and to higher interception losses (resulting in a less deep seepage) compared to beech stands. For these reasons, spruce-dominated forests tend to have more than double the concentrations of nitrate in seepage water compared with broadleaved forests. These species effects depend in part on the age of the forests and on the fate of nitrate in deeper soil layers. In Bavaria, the Southernmost State of Germany active plantation management shifted the balance from the original broadleaved forests towards spruce dominated forests in the 18th and 19th century. Planting of forests in the late 20th Century shifted to an emphasis on broadleaved species, and this shift contributes to reductions in nitrate concentrations of seepage water in areas with high N deposition. For sensitive areas like ground water protection zones mixed-species forests with higher proportions of broadleaved species are recommended in order to reduce the risk of excessive nitrate leaching.

Keywords

Nitrate Concentration Seepage Water Nitrate Contamination High Leaf Area Water Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson J K, Hornung M, Kennedy V H, Norris D A, Paterson I S and Stevens P A 1993 Soil solution chemistry and throughfall under adjacent stands of Japanese Larch and Sitka Spruce at three contrasting locations in Britain. Forestry 66(1), 51–68.Google Scholar
  2. Augusto L, Ranger J, Binkley D and Rothe A 2002 Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 59, 233–253.CrossRefGoogle Scholar
  3. Bayerisches Staatsministerium für Landwirtschaft und Forsten 2004 Waldzustandsbericht 2004. Bayerisches Staatsministerium für Landwirtschaft und Forsten, Munich, Germany, http://www.forst.bayern.de.Google Scholar
  4. Binkley D and Giardina C 1998 Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42, 89–106.CrossRefGoogle Scholar
  5. Binkley D, Burnham H, and Allen H L 1999 Water quality impacts of forest fertilization with nitrogen and phosphorus. For. Ecol. Manage. 121, 191–213.CrossRefGoogle Scholar
  6. Binkley D, Ice G G, Kaye J and Williams C A 2004 Patterns of variation in nitrogen and phosphorus concentrations in forest streams of the United States. Journal of the American Water Association 2004:1277–1291.Google Scholar
  7. Binkley D, Sollins P, Bell R, Sachs D and Myrold D 1992 Biochemistry of adjacent conifer and alder conifer stands. Ecology 73, 2022–2033.CrossRefGoogle Scholar
  8. Brown A H F 1992 Functioning of mixed-species stands at Gisburn, NW-England. In: Cannell MGR, Malcolm DC and Robertson PA (eds.): The ecology of mixed-species stands of trees. Special Publication 11 of the Britisch Ecological Society, Blackwell Scientific Publications, Oxford, 125–150.Google Scholar
  9. Butterbach-Bahl K, Gasche R, Willibald G and Papen H 2002 Exchange of N-gases at the Höglwald forest — A summary. Plant and Soil 240, 117–123.CrossRefGoogle Scholar
  10. Callesen I, Raulund-Rasmussen K, Gundersen P and Stryhn H 1999 Nitrate concentrations in soil solution below Danish forests. For. Ecol. Manage. 114, 71–82.CrossRefGoogle Scholar
  11. De Schrijver A, Van Hoydonck G, Nachtergale L, De Keersmaeker L, Mussche S and Lust N 2000 Comparison of nitrate leaching under Silver Birch (Betula pendula) and Corsican Pine (Pinus Nigra SSP. Laricio) in Flanders (Belgium). Water, Air and Soil Pollution 122, 77–91.CrossRefGoogle Scholar
  12. Falkengren-Grerup U and Bergkvist B 1995 Effects of acidifying air pollutants on soil/soil solution chemistry of forest ecosystems. Annali di chimica 85(7–8), 317–327.Google Scholar
  13. Gensior A, Kölling C and Mellert K H 2003 Die Nitratinventur in Bayern. Methodik und Ergebnisse. Berichte Freiburger Forstliche Forschung, Heft 49, 101–113.Google Scholar
  14. Gosz J R 1981 Nitrogen cycling in coniferous forests. In: Clark FE and Rosswall T (eds.): Terrestrial Nitrogen Cycles. Ecol. Bull. (Stockholm) 33, 405–425.Google Scholar
  15. Gundersen P, Emmett B A, Kjonaas O J, Koopmans C J and Tietmema A 1998 Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manage. 101, 37–56.CrossRefGoogle Scholar
  16. Hansen E A and Harris A R 1975 Validity of soil water samples collected with porous ceramic cups. Soil Science Society of America Proceedings 39, 528–536.CrossRefGoogle Scholar
  17. Hatch D J, Jarvis S C, Rook A J and Bristow A W 1997 Ionic contents of leachate from grassland soils, a comparison between ceramic suction cup samples and drainage. Soil Use and Management 13, 68–74.Google Scholar
  18. Hedin L O, Armesto J J and Johnson A H 1995 Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of the biogeochemical theory. Ecology 76(2), 493–509.CrossRefGoogle Scholar
  19. Heitz R and Rehfuess K E 1999 Reconversion of Norway spruce (Picea abies (L.) Karst.) stands into mixed forests: effects on soil properties and nutrient fluxes. in Olsthoorn et al. (eds.) Mangement of mixed-species forest: silviculture and economics. IBN Scientific contributions 15, IBN-DLO, Wageningen, NL., 37–45.Google Scholar
  20. Jacobsen C, Rademacher P, Meesenburg H and Meiwes K J 2002 Gehalte chemischer Elemente in Baumkompartimenten — Literaturstudie und Datensammlung. Niedersächsische Forstliche Forschungs-und Versuchsanstalt, Göttingen, http://www.nfv.gwdg.de.Google Scholar
  21. Johnson D W and Lindberg S E (Eds.) 1992 Atmospheric deposition and forest nutrient cycling. Ecological Studies 91, Springer Verlag, New York.Google Scholar
  22. Kreutzer K 1981 Die Stoffbefrachtung des Sickerwassers in Waldbeständen. Mitteilungen Deutsche Bodenkundliche Gesellschaft 32, 273–286.Google Scholar
  23. Kreutzer K 1989 The impact of forest management practices on the soil acidification in established forests. Air Pollution Research Report 13, 75–90. Comission of the European Communities, Brussels, Belgium.Google Scholar
  24. Leak W B and Martin C W 1975 Relationship of stand age to streamwater nitrate in New Hampshire. USDA Forest Service Research Note NE-211 Upper Darby, Pennsylvania.Google Scholar
  25. MacDonald J A, Dise N B, Matzner E, Armbruster P, Gundersen P and Forsius M 2002 Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology 8, 1028–1033.CrossRefGoogle Scholar
  26. Meesenburg H, Horvath B and Meiwes KJ 2003 Stoffhaushalt von Waldökosystemen NW — Deutschlands unter hoher Stickstoffbelastung. Berichte Freiburger Forstliche Forschung, Heft 49, 57–69.Google Scholar
  27. Melillo J M 1981 Nitrogen cycling in deciduous forests. In: Clark FE and Rosswall T (eds.): Terrestrial Nitrogen Cycles. Ecol. Bull. (Stockholm) 33, 427–442.Google Scholar
  28. Miller H G 1979 The nutrient budget of even-aged forests. In Ford E D, Malcolm D C and Atterson J (eds.) The ecology of even-aged forest plantations. Institute of Terrestrial Ecology, Cambridge.Google Scholar
  29. Riß M 2001 Untersuchungen zur Nitratbelastung in den Wäldern der südlichen Münchner Schotterebene 2. Teil: Flächige Abschätzung und Prognose. Master Thesis, Forest Faculty, Technische Universität München.Google Scholar
  30. Rothe A and Borchert H 2003 Der Wald für morgen — eine Naturalbilanz über 25 Jahre naturnahe Forstwirtschaft im Bayerischen Staatswald. LWF-Bericht 39, Bayersiche Landesanstalt für Wald und Forstwirtschaft, Freising, Germany.Google Scholar
  31. Rothe A and Mellert K H 2004 Effects of forest management on nitrate concentrations in seepage water: Results from three model areas in Southern Bavaria, Germany. Water, Air and Soil Pollution, in press.Google Scholar
  32. Rothe A, Brand S and Hurler R 1999 Waldbewirtschaftung und Nitratbelastung des Grundwassers. AFZ/Der Wald 10, 531–533.Google Scholar
  33. Rothe A, Englschall M, Hurler R, Wittfoth J and Butterbach K 2000 Nitratverlagerung in tieferen Bodenschichten eines süddeutschen Waldgebietes. Wasser und Boden 52(11), 52–56.Google Scholar
  34. Rothe A, Huber C, Kreutzer K and Weis W 2002 Deposition and soil leaching in stands of Norway spruce and European beech: Results from the Höglwald in comparison with other European case studies. Plant and Soil 240, 33–45.CrossRefGoogle Scholar
  35. Stevens P A, Norris D A, Sparks T H and Hodgson A L 1994 Soil and Stream water interactions for different aged forest and moorland catchnments in Wales. Water, Air, and Soil Pollution 73, 297–317.CrossRefGoogle Scholar
  36. Stone E 1975 Effects of species on nutrient cycles and soil change. Philosophical Transactions of the Royal Society, London (B) 27, 149–162.Google Scholar
  37. Strebel O, Böttcher J and Duynisveld W H M 1993 Ermittlung von Stoffeinträgen und deren Verbleib im Grundwasserleiter eines norddeutschen Wassergewinnungsgebietes. Texte des Umweltbundesamtes 46, 86 S. Federal Environmental Agency of Germany, Berlin.Google Scholar
  38. Walentowski H, Ewald J, Fischer A, Kölling C and Türk W 2004 Handbuch der natürlichen Waldgesellschaften Bayerns. Verlag Geobotanica, Freising, Germany, 441pp.Google Scholar
  39. Weis W 2003 Vergleichende Untersuchungen zum Stoffverlust in Waldökosystemen bei Verjüngung über Gruppenschirmstellung und Kleinkahlschlag. Abschlussbericht zum Forschungsbericht B59, Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising, Germany.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Andreas Rothe
    • 1
  1. 1.Bayerisches Staatsministerium für LandwirtschaftMünchenGermany

Personalised recommendations