Advertisement

Vector-Attribute Filters

  • Erik R. Urbach
  • Niek J. Boersma
  • Michael H.F. Wilkinson
Part of the Computational Imaging and Vision book series (CIVI, volume 30)

Abstract

A variant of morphological attribute filters is developed, in which the attribute on which filtering is based, is no longer a scalar, as is usual, but a vector. This leads to new granulometries and associated pattern spectra. When the vector-attribute used is a shape descriptor, the resulting granulometries filter an image based on a shape or shape family instead of one or more scalar values.

Keywords

Mathematical morphology connected filters multi-scale analysis granulometries pattern spectra vector-attributes shape filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Batman and E. R. Dougherty. Size distributions for multivariate morphological granulometries: texture classification and statistical properties. Optical Engineering, 36(5): 1518–1529, May 1997.Google Scholar
  2. [2]
    E. J. Breen and R. Jones. Attribute openings, thinnings and granulometries. Computer Vision and Image Understanding, 64(3):377–389, 1996.CrossRefGoogle Scholar
  3. [3]
    B. Burgeth, M. Welk, C. Feddern, and J. Weickert. Morphological operations on matrixvalued images. In T. Pajdla and J. Matas, editors, Computer Vision — ECCV 2004, pages 155–167, Berlin, 2004. Springer.Google Scholar
  4. [4]
    J. Flusser and T. Suk. Construction of complete and independent systems of rotation moment invariants. In N. Petkov and M.A. Westenberg, editors, CAIP 2003: Computer Analysis of Images and Patterns, pages 41–48, Berlin Heidelberg, 2003. Springer-Verlag.Google Scholar
  5. [5]
    A. Hanbury and J. Serra. Mathematical morphology in the HLS colour space. In 12th British Mach. Vis. Conf., pages 451–460, Manchester, UK, September 2001.Google Scholar
  6. [6]
    M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Infomation Theory, IT-8:179–187, 1962.Google Scholar
  7. [7]
    R.A. Peters II. Mathematical morphology for angle-valued images. In Nonlinear Image Processing VIII, volume 3026 of Proceedings of the SPIE, pages 84–94, 1997.Google Scholar
  8. [8]
    P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Trans. Patt. Anal. Mach. Intell., 11:701–715, 1989.CrossRefGoogle Scholar
  9. [9]
    G. Matheron. Random Sets and Integral Geometry. John Wiley, 1975.Google Scholar
  10. [10]
    A. Meijster and M. H. F. Wilkinson. Fast computation of morphological area pattern spectra. In Int. Conf. Image Proc. 2001, pages 668–671, 2001.Google Scholar
  11. [11]
    P. F. M. Nacken. Chamfer metrics, the medical axis and mathematical morphology. Journal Mathematical Imaging and Vision, 6:235–248, 1996.CrossRefGoogle Scholar
  12. [12]
    P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image and sequence processing. IEEE Transactions on Image Processing, 7:555–570, 1998.CrossRefGoogle Scholar
  13. [13]
    D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern Recogn. Lett., 20:1191–1199, 1999.CrossRefGoogle Scholar
  14. [14]
    E. R. Urbach and J. B. T. M. Roerdink, and M. H. F. Wilkinson. Connected rotation-invariant size-shape granulometries. In Proc. 17th Int. Conf. Pat. Rec., volume 1, pages 688–691, 2004.CrossRefGoogle Scholar
  15. [15]
    E. R. Urbach and M. H. F Wilkinson. Shape-only granulometries and grey-scale shape filters. In Proc. ISMM2002, pages 305–314, 2002.Google Scholar
  16. [16]
    L. Vincent. Granulometries and opening trees. Fundamenta Informaticae, 41:57–90, 2000.Google Scholar
  17. [17]
    P. Yap, R. Paramesran, and S. Ong. Image analysis by Krawtchouk moments. IEEE Trans. Image Proc., 12(11):1367–1377, November 2003.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Erik R. Urbach
    • 1
  • Niek J. Boersma
    • 1
  • Michael H.F. Wilkinson
    • 1
  1. 1.Institute for Mathematics and Computing ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations