Advertisement

A Comparison of ICA Algorithms in Biomedical Signal Processing

  • B. Azzerboni
  • M. Ipsale
  • F. La Foresta
  • N. Mammone
  • F. C. Morabito

Abstract

In the last years Independent Component Analysis (ICA) has been applied with success in signal processing and many algorithms have been developed in order to perform ICA. In this paper we review some algorithms, like INFOMAX (Bell and Sejnowski 1995), extended-INFOMAX (Lee, Girolami and Sejniowski 1997), FastICA (OjA, and Hyvärinen 1999), that solve the ICA problem under the assumption of the linear mixture model. We also show an overview of the nonlinear ICA algorithms and we discuss the MISEP (Almeida 2003). In order to test the performances of the reviewed algorithms, we present some applications of ICA in biomedical signal processing. In particular the application of ICA to the electroencephalographic (EEG) and surface electromyographic (sEMG) recordings are shown.

Keywords

Independent Component Analysis Neural Networks Artifact Removal sEMG EEG Biomedical Signals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida L.B.: Faster training in nonlinear ICA using MISEP, in Proc. 4th Int. Sym. on ICA and BSS, pp. 113–118, 2003.Google Scholar
  2. Azzerboni B., M. Ipsale, F. La Foresta, F.C. Morabito: Common Drive Detection for Axial Muscles Cerebral Control by Neural Network and Coherence Analysis of Surface Electromyography, in Proc. of 1st Int. IEEE EMB Conference on Neural Engineering, pp. 352–355, 2003.Google Scholar
  3. Barbati G., C. Porcaro, F. Zappasodi, P.M. Rossini, F. Tecchio: Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals, Clinical Neurophysiology, vol. 115, pp. 1220–1232, 2004.CrossRefGoogle Scholar
  4. Bell A.J., and T.J. Sejnowski: An information-maximization approach to blind separation and blind deconvolution, Neural Computation, vol. 7, pp. 1129–1159, 1995.CrossRefGoogle Scholar
  5. Delorme A., S. Makeig, T. Sejnowski: Automatic artifact rejection for EEG data using high-order statistics and independent component analysis, in Proc. of the 3rd Int. Workshop on ICA, pp. 457–462, 2001.Google Scholar
  6. Friston K.J., A. Mechelli, R. Turner, C.J. Price: Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics, Neuroimage, 12, pp. 466–477, 2000.CrossRefGoogle Scholar
  7. Hyvärinen A., Karhunen J., Oja E.: Independent Component Analysis, John Wiley & Sons, Inc., 2001.Google Scholar
  8. Jung T., C. Humphries, T.W. Lee, S. Makeig, M.J. McKeown, V. Iragui, T. Sejnowski: Removing Electroencephalographic Artifacts: Comparison between ICA and PCA, Computers in Cardiology, pp. 383–386, 2000.Google Scholar
  9. Jung T., S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, T. Senjowski: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects, Clinical Neurophysiology 111 pp. 1745–1758, 2000.CrossRefGoogle Scholar
  10. Jung T.P., C. Humpries, T.-W. Lee, S. Makeig, M.J. McKeown, V. Iragui, and T. Sejnowski: Extended ICA removes artifacts from electroencephalographic recordings, in Ad. in Neural Information Processing Systems, volume 10, MIT Press, 1998.Google Scholar
  11. Lee T.W., M. Girolami, and T.J. Sejnowski: Independent Component Analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources, Neural Computation, 11(2), pp. 606–633, 1999.CrossRefGoogle Scholar
  12. Taleb A., C. Jutten: Source separation in postnonlinear mixtures, IEEE Trans. on Signal Processing, 47(10) pp. 2807–2820, 1999.CrossRefGoogle Scholar
  13. Tey E.T. and S. Puthusserypady: Modified post nonlinear ICA algorithm for large fMRI dataset, in Proc. of the World Congress on Medical Physics and Biomedical Engineering, 2003.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • B. Azzerboni
    • 1
  • M. Ipsale
    • 1
  • F. La Foresta
    • 1
    • 2
  • N. Mammone
    • 2
  • F. C. Morabito
    • 2
  1. 1.Dipartimento di Fisica della Materia e Tecnologie Fisiche AvanzateUniversita degli Studi di MessinaMessinaItaly
  2. 2.Dipartimento di Informatica, Matematica, Elettronica e TrasportiUniversità “Mediterranea” di Reggio CalabriaReggio CalabriaItaly

Personalised recommendations