Advertisement

Mass Spectrometry Data Analysis for Early Detection of Inherited Breast Cancer

  • Francesco Baudi
  • Mario Cannataro
  • Rita Casadonte
  • Francesco Costanzo
  • Giovanni Cuda
  • Maria Concetta Faniello
  • Marco Gaspari
  • Pietro Hiram Guzzi
  • Tommaso Mazza
  • Barbara Quaresima
  • Pierosandro Tagliaferri
  • Giuseppe Tradigo
  • Pierangelo Veltri
  • Salvatore Venuta

Abstract

Mass Spectrometry (MS) can be used as a detector in High Performance Liquid Chromatography (HPLC) systems or as a tool for direct protein/peptides profiling from biological samples. Data Mining (DM) is the semi-automated extraction of patterns representing knowledge implicitly stored in large databases. The combined use of MS with DM is a novel approach in proteomic pattern analysis and is emerging as an effective method for the early diagnosis of diseases. We describe the workflow of a proteomic experiment for early detection of cancer which combines MS and DM, giving details of sample treatment and preparation, MS data generation, MS data preprocessing, data clustering and classification.

Keywords

Proteomics Mass Spectrometry Data Mining Breast Cancer Biomarkers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebersold, Ruedi and Mann, Matthias (2003). Mass spectrometry-based proteomics. Nature, 422:198–207.CrossRefGoogle Scholar
  2. Ball, G., Mian, S., Holding, F., Allibone, R., Lowe, J., Ali, S., Li, G., McCardie, S., Ellis, I., Creaser, C., and Rees, R. (2002). An integrated approach utilizing artificial neural networks and seldi mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics, 3(18):395–404.CrossRefGoogle Scholar
  3. Cannataro, M., Comito, C., Schiavo, F. Lo, and Veltri, P. (2004). Proteus, a grid based problem solving for bioinformatics: Architecture and experiments. IEEE Computational Intelligence Bulletin, 3(1):7–18.Google Scholar
  4. Conrads, T.P., Zhou, M., Petricoin, E.F., Liotta, L., and Veenstra, T.D. (2003). Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn, 4(3):411–420.CrossRefGoogle Scholar
  5. Cuda, Giovanni, Cannataro, Mario, Quaresima, Barbara, Baudi, Francesco, Casadonte, Rita, Faniello, Maria Concetta, Tagliaferri, Pierosandro, Veltri, Pierangelo, Costanzo, Francesco, and Venuta, Salvatore (2003). Proteomic profiling of inherited breast cancer: Identification of molecular targets for early detection, prognosis and treatment, and related bioinformatics tools. Lecture Notes in Computer Science, pages 245–247.Google Scholar
  6. Glish, Gary L. and Vachet, Richard W. (2003). The basic of mass spectrometry in the twenty-first century. Nature Reviews, 2:140–150.CrossRefGoogle Scholar
  7. Joliffe, I.T. (1986). Principal Component Analysis. Springer-Verlag.Google Scholar
  8. Lilien, Ryan H., Farid, Hany, and Donald, Bruce R. (2003). Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. Journal of computational biology, 10(6):925–946.CrossRefGoogle Scholar
  9. Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., and Liotta, L.A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. The Lancet, 359(9306):572–577.CrossRefGoogle Scholar
  10. Wagner, M., Naik, D., and Pothen, A. (2003). Protocols for disease classification from mass spectrometry data. Proteomics, 9(3):1692–1698.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Francesco Baudi
    • 1
  • Mario Cannataro
    • 1
  • Rita Casadonte
    • 1
  • Francesco Costanzo
    • 1
  • Giovanni Cuda
    • 1
  • Maria Concetta Faniello
    • 1
  • Marco Gaspari
    • 1
  • Pietro Hiram Guzzi
    • 1
  • Tommaso Mazza
    • 1
  • Barbara Quaresima
    • 1
  • Pierosandro Tagliaferri
    • 1
  • Giuseppe Tradigo
    • 1
  • Pierangelo Veltri
    • 1
  • Salvatore Venuta
    • 1
  1. 1.University Magna Græcia of CatanzaroCatanzaroItaly

Personalised recommendations