Advertisement

Stratistical Learning for Parton Identification

  • D. Cauz
  • M. Giordani
  • G. Pauletta
  • M. Rossi
  • L. Santi
Conference paper

Abstract

The application of methods of statistical learning to the identification of the partons from which hadronic jets originate is investigated using simulated jets in the CDF detector with the ultimate objective of applying them at the trigger level. Using only jet-related properties, it appears to be raltively easy to distinguish between jets originating from gluons and those originating from quarks in an energy-independent manner. Distinguishing between quark flavours is more difficult and will require inclusion of other variables.

Keywords

HEP Parton Identification Multi-Layer Perceptron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anzelotti, G. et al., TOTEM: A highly parallel chip for triggering applications with inductive learning based on the Reactive Tabu Search, Int. J. of Modern Physics C 6(4), 1995 pp. 555–560.CrossRefGoogle Scholar
  2. Battiti, R. and Tecchiolli, G. The Reactive Tabu Search. ORSA Journal of Computing, Vol 6 n. 2, 1994 pp. 126–140.zbMATHGoogle Scholar
  3. Badgett, W. et al., Neural networks at the Tevatron, AIHENP2, Agelonde France 1992, Ed. D. Perret Gallix, World Scientific 1992.Google Scholar
  4. Bianchin, S. et al., in Classification of jets from pp-bar collisions at Tevatron energies, AIHENP2, Agelonde France 1992, Ed. D. Perret Gallix, World Scientific 1992.Google Scholar
  5. Bianchin, S. et al, Int. J. of Neural Systems, Vol. 3(Supp 1992).Google Scholar
  6. Corcella, G. et al HERWIG6: An Event Generator for Hadron Emission Reactions With Interfering Gluons, hep-ph/0011363, Cavendish-HEP-99/03, CERN-TH/2000-284.Google Scholar
  7. Cortes, C. and Vapnik, V. Support Vector Networks in Machine Learning, 20, 1995, pp. 1; K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms, IEEE Neural Networks, 12(2):181–201.Google Scholar
  8. Sjostrand, T. Lonnblad, L. Mrenna, S. PYTHIA 6.2: Physics and Manual, LU-TP-01-21, Aug 2001, hep-ph/0108264.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • D. Cauz
    • 1
  • M. Giordani
    • 1
  • G. Pauletta
    • 1
  • M. Rossi
    • 1
  • L. Santi
    • 1
  1. 1.Dipartimento di FisicaUniversita di Udine e I.N.F.N. di UdineUdineItalia

Personalised recommendations