Advertisement

Immobilised Cell Technologies for the Dairy Industry

  • Christophe Lacroix
  • Franck Grattepanche
  • Yann Doleyres
  • Dirk Bergmaier
Part of the Focus on Biotechnology book series (FOBI, volume 8B)

Keywords

Lactic Acid Lactic Acid Bacterium Dilution Rate Lactic Acid Production Continuous Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Stanton, C.; Gardiner, G.; Meehan, H.; Collins, K.; Fitzgerald, G.; Lynch, P.B. and Ross, R.P. (2001) Market potential for probiotics. Am. J. Clin. Nutr. 73: 476S–483S.PubMedGoogle Scholar
  2. [2]
    Champagne, C.P.; Lacroix, C. and Sodini-Gallot, I. (1994) Immobilized cell technologies for the dairy industry. CRC Crit. Rev. Biotechnol. 14: 109–134.Google Scholar
  3. [3]
    Artignan, J.M.; Corrieu, G. and Lacroix, C. (1997) Rheology of pure and mixed kappa-carrageenan gels in lactic-acid fermentation conditions. J. Texture Stud. 28: 47–70.Google Scholar
  4. [4]
    Sodini, I.; Boquien, C.Y.; Corrieu, G. and Lacroix, C. (1997) Microbial dynamics of co-and separately entrapped mixed cultures of mesophilic lactic acid bacteria during the continuous prefermentation of milk. Enzyme Microb. Technol. 20: 381–388.CrossRefPubMedGoogle Scholar
  5. [5]
    Lamboley, L.; Lacroix, C.; Artignan, J.M.; Champagne, C.P. and Vuillemard, J.C. (1999) Long-term mechanical and biological stability of an immobilized cell reactor for continuous mixed-strain mesophilic lactic starter production in whey permeate. Biotechnol. Prog. 15: 646–654.CrossRefPubMedGoogle Scholar
  6. [6]
    Lamboley, L.; Lacroix, C. and Champagne, J.C. (2001) Effect of inoculum composition and low KCl supplementation on the biological and rheological stability of an immobilized-cell system for mixed mesophilic lactic starter production. Biotechnol. Prog. 17: 1071–1078.CrossRefPubMedGoogle Scholar
  7. [7]
    Dunne, W.M., Jr. (2002) Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 15: 155–166.CrossRefPubMedGoogle Scholar
  8. [8]
    Bergmaier, D.; Lacroix, C. and Champagne, C.P. (2002) Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol., 95: 1049–1057.CrossRefGoogle Scholar
  9. [9]
    Kulozik, U. and Wilde, J. (1999) Rapid lactic acid production at high cell concentrations in whey ultrafiltrate by Lactobacillus helveticus. Enzyme Microb. Technol. 24: 297–302.CrossRefGoogle Scholar
  10. [10]
    Tejayadi, S. and Cheryan, M. (1995) Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Appl. Microbiol. Biotechnol. 43: 242–248.CrossRefGoogle Scholar
  11. [11]
    Gonçalves, L.M.D.; Barreto, M.T.O.; Xavier, A.M.B.R.; Carrondo, M.J.T. and Klein, J. (1992) Inert supports for lactic acid fermentation-a technological assessment. Appl. Microbiol. Biotechnol. 38: 305–311.CrossRefGoogle Scholar
  12. [12]
    Poncelet, D. and Neufeld, R.J. (1996) Fundamentals of dispersion in encapsulation technology. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized cells: Basics and applications. Elsevier Science, Amsterdam, The Netherlands; pp. 47–54.Google Scholar
  13. [13]
    Champagne, C.P.; Raymond, Y.; Mondou, F. and Julien, J.P. (1995) Studies on the encapsulation of Bifidobacterium longum cultures by spray-coating or cocrystallization. Bif. Microflora. 14: 7–14.Google Scholar
  14. [14]
    Sunohara, H.; Ohno, T.; Shibata, N. and Seki, K., inventors; Morishita Jintan Co. Ltd, assignee (1995) Dec. 26. Process for producing capsule and capsule obtained thereby. U.S. patent 5,478,570.Google Scholar
  15. [15]
    Picot, A. and Lacroix, C. (2003) Effect of dynamic loop mixer operating conditions on o/w emulsion used for cell encapsulation. Lait. 83: 237–250.CrossRefGoogle Scholar
  16. [16]
    Picot, A. and Lacroix, C. (2003) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Intern. Dairy J. (in press).Google Scholar
  17. [17]
    Arnaud, J.-P.; Lacroix, C. and Castaigne, F. (1992) Counterdiffusion of lactose and lactic acid in κ-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme Microb. Technol. 14: 715–724.CrossRefPubMedGoogle Scholar
  18. [18]
    Masson, F.; Lacroix, C. and Paquin, C. (1994) Direct measurement of pH profiles in gel beads immobilizing Lactobacillus helveticus using a pH sensitive microelectrode. Biotechnol. Tech. 8: 551–556.CrossRefGoogle Scholar
  19. [19]
    Cachon, R.; Antérieux, P. and Diviès, C. (1998) The comparative behaviour of Lactococcus lactis in free and immobilized culture processes. J. Biotechnol. 63: 211–218.CrossRefGoogle Scholar
  20. [20]
    Monbouquette, H.G.; Sayles, G.D. and Ollis, D.F. (1990) Immobilized cell biocatalyst activation and pseudo-steady state behavior: Model and experiment. Biotechnol. Bioeng. 35: 609–629.CrossRefPubMedGoogle Scholar
  21. [21]
    Wijffels, R.H.; De Gooijer, C.D.; Kortekass, S. and Tamper, J.H. (1991) Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: Part 2. Model evaluation. Biotechnol. Bioeng. 38: 544–550.CrossRefGoogle Scholar
  22. [22]
    Yabannavar, V.M. and Wang, D.I.C. (1991) Analysis of mass transfert for immobilized cells in an extractive lactic acid fermentation. Biotechnol. Bioeng. 37: 544–550.CrossRefPubMedGoogle Scholar
  23. [23]
    Schepers, A.W. (2003) Modelling of growth and lactic acid production of Lactobacillus helveticus during continuous free and immobilized cell cultures. Ph.D. Dissertation, 20428, Université Laval, Quebec, Canada.Google Scholar
  24. [24]
    Arnaud, J.P. and Lacroix, C. (1991) Diffusion of lactose in κ-carrageenan / locust bean gum gel beads with or without entrapped growing bacteria. Biotechnol. Bioeng. 38: 1041–1049.CrossRefPubMedGoogle Scholar
  25. [25]
    Prioult, G.; Lacroix, C.; Turcotte, C. and Fliss, I. (2000) Simultaneous immunofluorescent detection of coentrapped cells in gel beads. Appl. Environ. Microbiol. 66: 2216–2219.CrossRefPubMedGoogle Scholar
  26. [26]
    Doleyres, Y.; Fliss, I. and Lacroix, C. (2003) Continuous production of lactic starters containing probiotics using immobilized cell technology. Biotechnol. Prog. (in press).Google Scholar
  27. [27]
    Doleyres, Y.; Fliss, I. and Lacroix, C. (2002) Quantitative determination of the spatial distribution of pure and mixed strain immobilized cells in gel beads by immunofluorescence. Appl. Microbiol. Biotechnol. 59: 297–302.CrossRefPubMedGoogle Scholar
  28. [28]
    Audet, P.; Lacroix, C. and Paquin, C. (1991) Continuous fermentation of a whey supplemented whey permeate medium with immobilized Streptococcus salivarius subsp. thermophilus. Int. Dairy J. 1: 1–15.CrossRefGoogle Scholar
  29. [29]
    Arnaud, J.P.; Lacroix, C. and Choplin, L. (1992) Effect of agitation rate on cell release rate and metabolism during continuous fermentation with entrapped growing Lactobacillus casei subsp. casei. Biotechnol. Techn. 6: 265–270.Google Scholar
  30. [30]
    Prévost, H. and Diviès, C. (1987) Fresh fermented cheese production with continuous prefermented milk by a mixed culture of mesophilic lactic streptococci entrapped in Ca-alginate. Biotechnol. Lett. 9: 789–791.CrossRefGoogle Scholar
  31. [31]
    Prévost, H. and Diviès, C. (1988) Continuous prefermentationof milk by entrapped yogurt bacteria. I. Development of the process. Milchwissenschaft 43: 621–625.Google Scholar
  32. [32]
    Prévost, H. and Diviès, C. (1988) Continuous prefermentation of milk by entrapped yogurt bacteria. II. Data for optimization of the process. Milchwissenschaft 43: 716–719.Google Scholar
  33. [33]
    Sodini-Gallot, I.; Corrieu, G.; Boquien, C.Y.; Latrille, E. and Lacroix, C. (1995) Process performance of continuous inoculation and acidification of milk with immobilized lactic acid bacteria. J. Dairy Sci. 78: 1407–1420.Google Scholar
  34. [34]
    Lamboley, L.; Lacroix, C. and Champagne, J.C. (1997) Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Biotech. Bioeng. 56: 502–516.CrossRefGoogle Scholar
  35. [35]
    Doleyres, Y.; Paquin, C.; LeRoy, M. and Lacroix, C. (2002) Bifidobacterium longum ATCC 15707 cell production during free-and immobilized-cell cultures in MRS-whey permeate medium. Appl. Microbiol. Biotechnol. 60: 168–173.CrossRefPubMedGoogle Scholar
  36. [36]
    Arnaud, J.P.; Lacroix, C.; Foussereau, C. and Chopin, L. (1993) Shear stress effects on growth and activity of Lactobacillus delbrueckii subsp. bulgaricus. J. Biotechnol. 29: 157–175.CrossRefPubMedGoogle Scholar
  37. [37]
    Champagne, C.P.; Girard, F. and Rodriguez, N. (1993) Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium-alginate beads. Int. Dairy J. 3: 257–275.CrossRefGoogle Scholar
  38. [38]
    Norton, S.; Lacroix, C. and Vuillemard, J.C. (1994) Reduction of yeast extract supplementation in lactic acid fermentation of whey permeate by immobilized cell technology. J. Dairy Sci. 77: 2494–2508.Google Scholar
  39. [39]
    Gobbetti, M. and Rossi, J. (1993) Continuous fermentation with free-growing and immobilized multistaters to get a kefir production pattern. Microbiologie-Aliments-Nutrition 11: 119–127.Google Scholar
  40. [40]
    Cachon, R. (1993) Etude du comportement cinétique d’une bactérie lactique modèle en culture libre ou immobilisée dans des billes de gel. Thèse de doctorat, Université de Bourgogne, Dijon, France.Google Scholar
  41. [41]
    Lacroix, C.; Sodini, I. and Corrieu, G. (1996) Microbiological stability of an immobilized cell bioreactor with mixed lactic acid bacteria during continuous fermentation of milk. In: Wijffels, R.H.; Buitelar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized cells: Basics and applications. Elsevier Science, Amsterdam, The Netherlands; pp. 600–607.Google Scholar
  42. [42]
    Krishnan, S.; Gowda, M.C.; Misra, M.C. and Karanth, N.G. (2001) Physiological and morphological changes in immobilized L. plantarum NCIM 2084 cells during repeated bacth fermentation for production of lactic acid. Food Biotechnol. 15: 193–202.CrossRefGoogle Scholar
  43. [43]
    Krisch, J. and Szajani, B. (1997) Ethanol and acetic tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti. Biotechnol. Lett. 19: 525–528.CrossRefGoogle Scholar
  44. [44]
    Curtain, C. (1986) Understanding and avoiding ethanol inhibition. Trends in Biotechnol. 4: 110.CrossRefGoogle Scholar
  45. [45]
    Holcberg, I. and Margalith, P. (1981) Alcoholic fermentation by immobilized yeast at high sugar concentration. Eur. J. Appl. Microbiol. Biotechnol. 13: 133–140.CrossRefGoogle Scholar
  46. [46]
    Diefenbach, R.; Keweloh, H. and Rehm, H.J. (1992) Fatty acid impurities in alginate influence the phenol tolerance of immobilized Escherichia coli. Appl. Microbiol. Biotechnol. 36: 530–534.CrossRefPubMedGoogle Scholar
  47. [47]
    Heipieper, H.J.; Keweloh, H. and Rehm, H.J. (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl. Environ. Microbiol. 57: 1213–1217.PubMedGoogle Scholar
  48. [48]
    Keweloh, H.; Heipieper, H.J. and Rehm, H.J. (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl. Microbiol. Biotechnol. 31: 383–389.CrossRefGoogle Scholar
  49. [49]
    Jouenne, T.; Tresse, O. and Junter, G.A. (1994) Agar-entrapped bacteria as an in vitro model of biofilms and their susceptibility to antibiotics. FEMS Microbiol. Lett. 119: 237–242.PubMedGoogle Scholar
  50. [50]
    Doleyres, Y.; Fliss, I. and Lacroix, C. (2003) Changes of lactic and probiotic culture characteristics during continuous immobilized-cell fermentation with mixed strains. submitted.Google Scholar
  51. [51]
    Trauth, E.; Lemaitre, J.P.; Rojas, C.; Diviès, C. and Cachon, R. (2001) Resistance of immobilized lactic acid bacteria to the inhibitory effect of quaternary ammonium sanitizers. Lebensm.-Wiss. U.-Technol. 34: 239–243.CrossRefGoogle Scholar
  52. [52]
    Reilly, S.S. and Gilliland, S.E. (1999) Bifidobacterium longum survival during frozen and refrigerated storage as related to pH during growth. J. Food Sci. 64: 714–718.Google Scholar
  53. [53]
    Desmond, C.; Stanton, C.; Fitzgerald, G.F.; Collins, K. and Ross, R.P. (2002) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J. 12: 183–190.CrossRefGoogle Scholar
  54. [54]
    Shapiro, J.A. and Dworkin, M. (Eds.) (1997) Bacteria as multicellular organism. Oxford Univ. Press, New York.Google Scholar
  55. [55]
    Bergmaier, D. (2002) Production d’exopolysaccharides par fermentation avec des cellules immobilisées de Lb. rhamnosus RW-9595M d’un milieu à base de perméat de lactosérum. Ph.D. Dissertation, 20383, Université Laval, Quebec, PQ, Canada.Google Scholar
  56. [56]
    Dieckelmann, M.; Johnson, L.A. and Beacham, I.R. (1998) The diversity of lipases from psychrotrophic strains of Pseudomonas: a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J. Appl. Microbiol. 85: 527–536.CrossRefPubMedGoogle Scholar
  57. [57]
    Barrett, N.E.; Grandison, A.S. and Lewis, M.J. (1999) Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk. J. Dairy Res. 66: 73–80.CrossRefPubMedGoogle Scholar
  58. [58]
    Lapointe, M.; Champagne, C.P.; Vuillemard, J.C. and Lacroix, C. (1996) Effect of dilution rate on bacteriophage development in an immobilized cell system used for continuous inoculation of Lactococci in milk. J. Dairy Sci. 79: 767–774.CrossRefGoogle Scholar
  59. [59]
    Champagne, C.P.; Girard, F. and Morin, N. (1988) Bacteriophage development in an immobilized lactic acid bacteria system. Biotechnol. Lett. 10: 463–468.CrossRefGoogle Scholar
  60. [60]
    Steenson, L.R.; Klaenhammer, T.R. and Swaisgood, H.E. (1987) Calcium alginate-immobilized cultures of lactic Streptococci are protected from bacteriophages. J. Dairy Sci. 70: 1121–1127.PubMedGoogle Scholar
  61. [61]
    Passos, F.M.L.; Klaenhammer, T.R. and Swaisgood, H.E. (1994) Response to phage infection of immobilized lactococci during continuous acidification of skim milk. J. Dairy Res. 61: 537–544.CrossRefGoogle Scholar
  62. [62]
    Macedo, M.G.; Champagne, C.P.; Vuillemard, J.C. and Lacroix, C. (1999) Establishment of bacteriophages in an immobilized cells system used for continuous inoculation of Lactococci. Int. Dairy J. 9: 437–445.CrossRefGoogle Scholar
  63. [63]
    Fitzgerald, G.F. and Hill, C. (1996) Genetics of starter cultures. In: Cogan, T.M. and Accolas, J.P. (Eds.) Dairy starter cultures. VCH Publishers, New-York, NY; pp. 25–46.Google Scholar
  64. [64]
    De Vuyst, L. and Degeest, B. (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177.CrossRefPubMedGoogle Scholar
  65. [65]
    Teuber, M.; Meile, L. and Schwarz, F. (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76: 115–137.CrossRefPubMedGoogle Scholar
  66. [66]
    Barbotin, J.N. (1994) Immobilization of recombinant bacteria. A strategy to improve plasmid stability. Ann. N.Y. Acad. Sci. 721: 303–309.PubMedGoogle Scholar
  67. [67]
    D’Angio, C.; Beal, C.; Boquien, C.Y. and Corrieu, G. (1994) Influence of dilution rate and cell immobilization on plasmid stability during continuous cultures of recombinant strains of Lactococcus lactis subsp. lactis. J. Biotechnol. 34: 87–95.Google Scholar
  68. [68]
    Huang, J.; Lacroix, C.; Daba, H. and Simard, R.E. (1996) Pediocin 5 production and plasmid stability during continuous free and immobilized cell cultures of Pediococcus acidilactici UL5. J. Appl. Bacteriol. 80: 635–644.PubMedGoogle Scholar
  69. [69]
    Kumar, P.K. and Schugerl, K. (1990) Immobilization of genetically engineered cells: a new strategy for higher stability. J. Biotechnol. 14: 255–272.CrossRefPubMedGoogle Scholar
  70. [70]
    Nasri, M.; Sayadi, S.; Barbotin, J.N.; Dhulster, P. and Thomas, D. (1987) Influence of immobilization on the stability of pTG201 recombinant plasmid in some strains of Escherichia coli. Appl. Environ. Microbiol. 53: 740–744.PubMedGoogle Scholar
  71. [71]
    Nasri, M.; Sayadi, S.; Barbotin, J.N. and Thomas, D. (1987) The use of the immobilization of whole living cells to increase stability of recombinant plasmid in Escherichia coli. J. Biotechnol. 6: 147–157.CrossRefGoogle Scholar
  72. [72]
    Dincbas, V.; Hortacsu, A. and Camurdan, A. (1993) Plasmid stability in immobilized mixed cultures of recombinant Escherichia coli. Biotechnol. Prog. 9: 218–220.CrossRefPubMedGoogle Scholar
  73. [73]
    Klinkenberg, G.; Lystad, K.Q.; Levine, D.W. and Dyrset, N. (2001) Cell release from alginate immobilized Lactococcus lactis ssp. lactis in chitosan and alginate coated beads. J. Dairy Sci. 84: 1118–1127.PubMedGoogle Scholar
  74. [74]
    Gilliland, S. E. (1985) Concentrated starter cultures. In: Gilliland, S.E. (Ed.) Bacterial starter cultures for food. CRC Press Inc.: Boca Raton, FL; pp. 145–157.Google Scholar
  75. [75]
    Sodini, I.; Boquien, C.Y.; Corrieu, G. and Lacroix, C. (1997) Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing. J. Ind. Microbiol. Biotechnol. 18: 56–61.CrossRefPubMedGoogle Scholar
  76. [76]
    Audet, P.; St-Gelais, D. and Roy, D. (1995) Production of mixed cultures of non-isogenic Lactococcus lactis ssp. cremoris using immobilized cells. Milchwissenschaft 50: 18–22.Google Scholar
  77. [77]
    Ibrahim, S.A. and Bezkorovainy, A. (1994) Growth-promoting factors for Bifidobacterium longum. J. Food Sci. 59: 189–191.Google Scholar
  78. [78]
    Ouellette, V.; Chevalier, P. and Lacroix, C. (1994) Continuous fermentation of a supplemented milk with immobilized Bifidobacterium infantis. Biotechnol. Tech. 8: 45–50.CrossRefGoogle Scholar
  79. [79]
    Corre, C.; Madec, M.N. and Boyaval, P. (1992) Production of concentrated Bifidobacterium bifidum. J. Chem. Technol. Biotechnol. 53: 189–194.CrossRefGoogle Scholar
  80. [80]
    Passos, F.M.L. and Swaisgood, H.E. (1993) Development of a spiral mesh bioreactor with immobilized Lactococci for continuous inoculation and acidification of milk. J. Dairy Sci. 76: 2856–2867.CrossRefGoogle Scholar
  81. [81]
    Sodini, I.; Lagace, L.; Lacroix, C. and Corrieu, G. (1998) Effect of continuous prefermentation of milk with an immobilized cell bioreactor on fermentation kinetics and curd properties. J. Dairy Sci. 81: 631–638.Google Scholar
  82. [82]
    Vickroy, T.B. (1985) Lactic acid. In: Moo-Young M. (Ed.) Comprehensive Biotechnology, vol. 3. Pergamon Press, Oxford, UK; pp. 761–776.Google Scholar
  83. [83]
    Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H. and Frank, J.R. (1995) Technological and economic potential of poly(lactic) acid and lactic acid derivatives. FEMS Microbiol. Rev. 16: 221–231.Google Scholar
  84. [84]
    Norton, S.; Lacroix, C. and Vuillemard, J.C. (1994) Kinetic study of a continuous fermentation of whey permeate by immobilized Lactobacillus helveticus. Enzyme Microb. Technol. 16: 457–466.CrossRefGoogle Scholar
  85. [85]
    Schepers, A.W.; Thibault, J. and Lacroix, C. (2002) Multiple factor kinectic analysis and modeling of Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I: Multiple factor kinetic analysis. Enzyme Microb. Technol. 30: 176–186.CrossRefGoogle Scholar
  86. [86]
    Mehaia, M.A. and Cheryan, M. (1986) Lactic acid from whey permeate in a membrane recycle bioreactor. Enzyme Microb. Technol. 8: 289–292.CrossRefGoogle Scholar
  87. [87]
    Ruas-Madiedo, P.; Hugenholtz, J. and Zoon, P. (2002) An overview of the functionnality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163–171.CrossRefGoogle Scholar
  88. [88]
    Bergmaier, D.; Lacroix, C. and Champagne, C.P. (2003) Exopolysaccharide production during chemostat cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol. submitted.Google Scholar
  89. [89]
    Jack, R.W.; Tagg, J.R. and Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59: 171–200.PubMedGoogle Scholar
  90. [90]
    Wan, J.; Hickey, M.W. and Mawson, R.F. (1995) Continuous production of bacteriocins, brevicin, nisin and pediocin using calcium alginate immobilized bacteria. J. Appl. Bacteriol. 79: 671–676.Google Scholar
  91. [91]
    Sonomoto, K.; Chinachoti, N.; Endo, N. and Ishizaki, A. (2000) Biosynthetic production of nisin Z by immobilized Lactococcus lactis IO-1. J. Mol. Catal. B. Enzym. 10: 325–334.CrossRefGoogle Scholar
  92. [92]
    Desjardins, P.; Meghrous, J. and Lacroix, C. (2001) Effect of aeration and dilution rate on nisin Z production during continuous fermentation with free and immobilized Lactococcus lactis UL719 in supplemented whey permeate. Int. Dairy J. 11: 943–951.CrossRefGoogle Scholar
  93. [93]
    Goulhen, F.; Meghrous, J. and Lacroix, C. (1999) Production of a nisin/pediocin mixture by pH-controlled mixed-strain batch cultures in supplemented whey permeate. J. Appl. Microbiol. 86: 399–406.CrossRefGoogle Scholar
  94. [94]
    Bertrand, N.; Fliss, I. and Lacroix, C. (2001) High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. Int. Dairy J. 11: 953–960.CrossRefGoogle Scholar
  95. [95]
    Guarner, F. and Schaafsma, G.J. (1998) Probiotics. Int. J. Food Microbiol. 39: 237–238.CrossRefPubMedGoogle Scholar
  96. [96]
    Adhikari, K.; Mustapha, A.; Grün, I.U. and Fernando, L. (2000) Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 83: 1946–1951.PubMedGoogle Scholar
  97. [97]
    Schillinger, U. (1999) Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage. Int. J. Food Microbiol. 47: 79–87.CrossRefPubMedGoogle Scholar
  98. [98]
    Dave, R.I. and Shah, N.P. (1997) Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int. Dairy J. 7: 31–41.CrossRefGoogle Scholar
  99. [99]
    Shah, N.P. and Ravula, R.R. (2000) Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust. J. Dairy Technol. 55: 139–144.Google Scholar
  100. [100]
    Sheu, T.Y.; Marshall, R.T. and Heymann, H. (1993) Improving survival of culture bacteria in frozen desserts by microentrapment. J. Dairy Sci. 76: 1902–1907.PubMedCrossRefGoogle Scholar
  101. [101]
    Champagne, C.P.; Gaudy, C.; Poncelet, D. and Neufeld, R.J. (1992) Lactococcus lactis release from calcium alginate beads. Appl. Environ. Microbiol. 58: 1429–1434.PubMedGoogle Scholar
  102. [102]
    Kearney, L.; Upton, M. and Mc Laughlin, A. (1990) Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants. Appl. Environ. Microbiol. 56: 3112–3116.PubMedGoogle Scholar
  103. [103]
    Maitrot, H.; Paquin, C.; Lacroix, C. and Champagne, C.P. (1997) Production of concentrated freezedried cultures of Bifidobacterium longum in κ-carrageenan-locust bean gum gel. Biotechnol. Techn. 11: 527–531.CrossRefGoogle Scholar
  104. [104]
    Modler, H.W. and Villa-Garcia, L. (1993) The growth of Bifidobacterium longum in a whey-based medium and viability of this organism in frozen yogurt with low and high levels of developed acidity. Cult. Dairy Prod. J. 28: 4–8.Google Scholar
  105. [105]
    Hussein, S.A. and Kebary, K.M.K. (1999) Improving viability of bifidobacteria by microentrapment and their effect on some pathogenic bacteria in stirred yogurt. Acta Aliment. 28: 113–131.Google Scholar
  106. [106]
    Sun, W. and Griffiths, M.W. (2000) Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17–25.CrossRefPubMedGoogle Scholar
  107. [107]
    Dinakar, P. and Mistry, V.V. (1994) Growth and viability of Bifidobacterium longum in cheddar cheese. J. Dairy Sci. 77: 2854–2864.PubMedGoogle Scholar
  108. [108]
    Lee, K.Y. and Heo, T.R. (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl. Environ. Microbiol. 66: 869–873.CrossRefPubMedGoogle Scholar
  109. [109]
    Prévost, H. and Diviès, C. (1992) Cream fermentations by a mixed culture of Lactococci entrapped in two-layer calcium alginate gel beads. Biotechnol. Lett. 14: 583–588.CrossRefGoogle Scholar
  110. [110]
    Krischke, W.; Schröder, M. and Trösch, W. (1991) Continuous production of L-lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Appl. Microbiol. Biotechnol. 34: 573–578.CrossRefGoogle Scholar
  111. [111]
    Iwasaki, K.-I.; Nakajima, M. and Sasahara, H. (1992) Porous alumina beads for immobilization of lactic acid bacteria and its application for repeated-batch fermentation in soy sauce production. J. Ferment. Bioeng. 73: 375–379.CrossRefGoogle Scholar
  112. [112]
    Senthuran, A.; Senthuran, V.; Mattiasson, B. and Kaul, R. (1997) Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol. Bioeng. 55: 841–853.CrossRefPubMedGoogle Scholar
  113. [113]
    Velazquez, A.C.; Pometto, A.L., 3rd; Ho, K.L. and Demirci, A. (2001) Evaluation of plastic-composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Appl. Microbiol. Biotechnol. 55: 434–441.CrossRefPubMedGoogle Scholar
  114. [114]
    Ho, K.-L.G.; Anthony, L.; Pometto, I.; Hinz, P.N.; Dickson, J.S. and Demirci, A. (1997) Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl. Environ. Microbiol. 63: 2516–2523.PubMedGoogle Scholar
  115. [115]
    Rao, A.V.; Shiwnarain, N. and Maharaj, I. (1989) Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can. Inst. Food Sci. Technol. J. 22: 345–349.Google Scholar
  116. [116]
    Wenrong, S. and Griffiths, M.W. (2000) Survival of bifidobacteria in yoghurt and stimulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17–25.CrossRefGoogle Scholar
  117. [117]
    Fàvaro Trindade, C.S. and Grosso, C.R.F. (2000) The effect of the immobilization of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastro-intestinal secretions. Milchwissenschaft 55: 496–499.Google Scholar
  118. [118]
    Tuli, A.; Khanna, P.K.; Marwaha, S.S. and Kennedy, J.F. (1985) Lactic acid production from whey permeate by immobilized Lactobacillus casei. Enzyme Microb. Technol. 7: 164–168.CrossRefGoogle Scholar
  119. [119]
    Roukas, T. and Kotzekidou, P. (1991) Production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells. Enzyme Microb. Technol. 13: 33–38.CrossRefGoogle Scholar
  120. [120]
    Boyaval, P. and Goulet, J. (1988) Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginate-entrapped Lactobacillus helveticus. Enzyme Microb. Technol. 10: 725–728.CrossRefGoogle Scholar
  121. [121]
    Roy, D.; Goulet, J. and LeDuy, A. (1987) Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J. Dairy Sci. 70: 506–513.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Christophe Lacroix
    • 1
  • Franck Grattepanche
    • 2
  • Yann Doleyres
    • 1
  • Dirk Bergmaier
    • 2
  1. 1.Laboratory of Food Biotechnology, Institute of Food Science and Nutrition, Swiss Federal Institute of TechnologyETH ZentrumZurichSwitzerland
  2. 2.Dairy Research Centre STELA, Pavillon Paul ComtoisUniversité LavalQuébecCanada

Personalised recommendations