Discoveries in oxygenic photosynthesis (1727–2003): a perspective

  • Govindjee 
  • David Krogmann
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 20)


We present historic discoveries and important observations, related to oxygenic photosynthesis, from 1727 to 2003. The decision to include certain discoveries while omitting others has been difficult. We are aware that ours is an incomplete timeline. In part, this is because the function of this list is to complement, not duplicate, the listing of discoveries in the other papers in these history issues of Photosynthesis Research. In addition, no one can know everything that is in the extensive literature in the field. Furthermore, any judgement about significance presupposes a point of view. This history begins with the observation of the English clergyman Stephen Hales (1677–1761) that plants derive nourishment from the air; it includes the definitive experiments in the 1960–1965 period establishing the two-photosystem and two-light reaction scheme of oxygenic photosynthesis; and includes the near-atomic resolution of the structures of the reaction centers of these two Photosystems, I and II, obtained in 2001–2002 by a team in Berlin, Germany, coordinated by Horst Witt and Wolfgang Saenger. Readers are directed to historical papers in Govindjee and Gest [(2002a) Photosynth Res 73: 1–308], in Govindjee, J. Thomas Beatty and Howard Gest [(2003a) Photosynth Res 76: 1–462], and to other papers in this volume for a more complete picture. Several photographs are provided here. Their selection is based partly on their availability to the authors (see Figures 1-15). Readers may view other photographs in Part 1 (Volume 73, Photosynth Res, 2002), Part 2 (Volume 76, Photosynth Res, 2003) and Part 3 (Volume 80, Photosynth Res, 2004) of the history issues of Photosynthesis Research. Photographs of most of the Nobel-laureates are included in Govindjee, Thomas Beatty and John Allen, this volume. For a complementary time line of anoxygenic photosynthesis, see H. Gest and R. Blankenship (this volume).

Key words

algae carbon fixation chlorophyll chloroplasts cyanobacteria electron carrier history light harvesting molecular biology oxygen evolution phosphorylation photosynthesis plants reaction centers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adir N, Zer H, Shochat S and Ohad I (2003) Photoinhibition — a historical perspective. Photosynth Res 76: 343–370PubMedCrossRefGoogle Scholar
  2. Åkerlund HE, Andersson B and Albertsson PÅ (1976) Isolation of Photosystem II enriched membrane vesicles from spinach thylakoids by phase partition. Biochim Biophys Acta 449: 525–535PubMedCrossRefGoogle Scholar
  3. Albertsson P-A (2003) The contribution of photosynthetic pigments to the development of biochemical separation methods: 1900–1980. Photosynth Res 76: 217–225PubMedCrossRefGoogle Scholar
  4. Allen JF (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth Res 73: 139–148PubMedCrossRefGoogle Scholar
  5. Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8: 15–19PubMedCrossRefGoogle Scholar
  6. Allen JF, Bennett J, Steinbeck KE and Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291: 25–29CrossRefGoogle Scholar
  7. Allen JP (2004) My daily constitutional in Martinsried. Photosynth Res 80: 157–163PubMedCrossRefGoogle Scholar
  8. Allen MB, Arnon DI, Capindale JB, Whatley FR and Durham IJ (1955) Photosynthesis by isolated chloroplasts. III. Evidence for complete photosynthesis. J Am Chem Soc 77: 4149–4155CrossRefGoogle Scholar
  9. Allen MB, Whatley FR and Arnon DI (1958) Photosynthesis with isolated chloroplasts. VI. Rates of conversion of light into chemical energy in photosynthetic phosphorylation. Biochim Biophys Acta 27: 16–23PubMedCrossRefGoogle Scholar
  10. Amesz J and Neerken S (2002) Excitation energy trapping in anoxygenic photosynthetic bacteria. Photosynth Res 73: 73–81PubMedCrossRefGoogle Scholar
  11. Anderson JM (2002) Changing concepts about the distribution of Photosystems 1 and 2 between grana-appressed and stroma-exposed thylakoid membranes. Photosynth Res 73: 157–164PubMedCrossRefGoogle Scholar
  12. Andersson B (1978) Separation of spinach chloroplast lamellae fragments by phase partition including the isolation of inside-out thylakoids, Doctoral thesis, Lund University, SwedenGoogle Scholar
  13. Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440PubMedCrossRefGoogle Scholar
  14. Andersson B, Åkerlund HE and Albertsson PÅ (1977) Light induced reversible proton extrusion by spinach chloroplast Photosystem II vesicles isolated by phase partition. FEBS Lett 77: 141–145PubMedCrossRefGoogle Scholar
  15. Andersson I, Knight S, Schneider G, Lindqvist Y, Lundqvist T, Brändén C-I and Lorimer GH (1989) Crystal structure of the active site of ribulose-bisphosphate carboxylase. Nature 337: 229–234CrossRefGoogle Scholar
  16. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24: 1–15PubMedGoogle Scholar
  17. Arnon DI (1951) Extracellular photosynthetic reactions. Nature 167: 1008–1010PubMedCrossRefGoogle Scholar
  18. Arnon DI, Allen MB and Whatley FR (1954a) Photosynthesis by isolated chloroplasts. Nature 174: 394–396PubMedCrossRefGoogle Scholar
  19. Arnon DI, Whatley FR and Allen MB (1954b) Photosynthesis by isolated chloroplasts. II. Photosynthetic phosphorylation, the conversion of light energy into phosphate bond energy. J Am Chem Soc 76: 6324–6329CrossRefGoogle Scholar
  20. Avron M (1963) A coupling factor in photophosphorylation. Biochim Biophys Acta 77: 699–702CrossRefGoogle Scholar
  21. Avron (Abramsky) M and Jagendorf AT (1956) A TPNH diaphorase from chloroplasts. Arch Biochem Biophys 65: 475–490PubMedCrossRefGoogle Scholar
  22. Bahr JT and Jensen RJ (1978) Activation of ribulose bisphosphate carboxylase in intact chloroplasts by CO2 and light. Arch Biochem Biophys 185: 38–48CrossRefGoogle Scholar
  23. Barber J (1982) Membrane surface charges and potentials in relation to structure and function. Annu Rev Plant Physiol 33: 261–295CrossRefGoogle Scholar
  24. Barber J (2004) Engine of life and big bang of evolution: a personal perspective. Photosynth Res 80: 137–155PubMedCrossRefGoogle Scholar
  25. Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76: 35–52PubMedCrossRefGoogle Scholar
  26. Bedbrook JR, Smith SM and Ellis RJ (1980) Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of chloroplast ribulose-1,5-bisphosphate carboxylase. Nature 287: 692–697CrossRefGoogle Scholar
  27. Belyaeva OB (2003) Studies of chlorophyll biosynthesis in Russia. Photosynth Res 76: 405–411PubMedCrossRefGoogle Scholar
  28. Bendall DS (1994) Robert Hill. Biographical Memoirs of Fellows of the Royal Society. Vol 40, pp 141–171. The Royal Society, LondonGoogle Scholar
  29. Bendall DS (2004) The unfinished story of cytochrome f. Photosynth Res 80: 265–276PubMedCrossRefGoogle Scholar
  30. Bengis C and Nelson N (1975) Purification and properties of the Photosystem I reaction center from chloroplasts. J Biol Chem 250: 2783–2788PubMedGoogle Scholar
  31. Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 307: 478–480Google Scholar
  32. Bennett J, Steinbeck KE and Arntzen CJ (1980) Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane proteins. Proc Natl Acad Sci USA 45: 1696–1702Google Scholar
  33. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant Photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  34. Benson AA (1977) Philosophy of the tracer method. Radioisotopes 26(5): 348–356PubMedGoogle Scholar
  35. Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73: 29–49PubMedCrossRefGoogle Scholar
  36. Bennoun P (2002) The present model of chlororespiration. Photosynth Res 73: 273–277PubMedCrossRefGoogle Scholar
  37. Berg S (1998) Seikichi Izawa (1926–1997). Photosynth Res 58: 1–4CrossRefGoogle Scholar
  38. Berthold DA, Babcock J and Yocum CF (1981) A highly resolved oxygen-evolving Photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134: 231–234CrossRefGoogle Scholar
  39. Biggins J and Mathis P (1988) Functional role of vitamin K in Photosystem I of the cyanobacterium Synechococystis 6803. Biochemistry 27: 1494–1500PubMedCrossRefGoogle Scholar
  40. Bishop NI (1959) The reactivity of a naturally occurring quinone (Q-255) in photochemical reactions of isolated chloroplasts. Proc Natl Acad Sci USA 45: 1696–1702PubMedCrossRefGoogle Scholar
  41. Black CC and Osmond B (2003) Crassulacean acid metabolism photosynthesis: ‘working the night shift.’ Photosynth Res 76: 329–341PubMedCrossRefGoogle Scholar
  42. Blackman FF (1905) Optima and limiting factors. Ann Bot 19: 281–295Google Scholar
  43. Blackman FF and Matthaei Gabrielle LC (1905) Experimental researches on vegetable assimilation and respiration. IV. A quantitative study of carbon dioxide assimilation and leaf temperature in natural illumination. Proc R Soc London 76: 402–460Google Scholar
  44. Blair GE and Ellis RJ (1973) Protein synthesis in chloroplasts. I. Light-driven synthesis of large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta 319: 223–234PubMedGoogle Scholar
  45. Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford, UKGoogle Scholar
  46. Blinks LR (1957) Chromatic transients in photosynthesis of red algae. In: Gaffron H, Brown AH, French CS, Livingston R, Rabinowitch EI, Strehler BL and Tolbert NE (eds) Research in Photosynthesis, pp 444–449. Interscience, New YorkGoogle Scholar
  47. Blinks LR (1974) Winthrop John Vanleuven Osterhout, August 2, 1871–April 9, 1964. Biographical Memoirs, Vol 44, pp 224–263. National Academy of Science Press, Washington, DCGoogle Scholar
  48. Blinks LR and Skow RK (1938) The time course of Photosystems as shown by rapid electrode method for oxygen. Proc Natl Acad Sci USA 24: 420–427PubMedCrossRefGoogle Scholar
  49. Boardman NK and Anderson JM (1964) Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and chlorophyll b and their possible role in light reactions of photosynthesis. Nature 203: 166–167CrossRefGoogle Scholar
  50. Bogorad L (2003) Photosynthesis research: advances through molecular biology. Photosynth Res 76: 13–33PubMedCrossRefGoogle Scholar
  51. Böhme H, Reimer S and Achim Trebst A (1971) The role of plastoquinone in photosynthesis: The effect of dibromo-thymoquinone on non cyclic and cyclic electron flow systems in isolated chloroplasts. Z Naturforsch 26b: 341–352Google Scholar
  52. Bonnet C (1754) Recherches sur l’usage des feuilles dans les plantes. Elie Luzac, fils, Göttingen/LeidenGoogle Scholar
  53. Borisov A (2003) The beginnings of research on biophysics of photosynthesis and initial contributions made by Russian scientists to its development. Photosynth Res 76: 413–426PubMedCrossRefGoogle Scholar
  54. Boussingault JB (1864) De la végétation dans l’obscurité. Ann Sci Nat (Paris) I: 314–324Google Scholar
  55. Bowes G, Ogren WL and Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45: 716–722PubMedCrossRefGoogle Scholar
  56. Boyer PD (2002) A research journey with ATP synthase. J Biol Chem 277(42): 39045–39061PubMedCrossRefGoogle Scholar
  57. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB and Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538PubMedGoogle Scholar
  58. Brody SS (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950–1960. Photosynth Res 73: 127–132PubMedCrossRefGoogle Scholar
  59. Bruns C and Karplus PA (1995) Refined crystal structure of spinach ferredoxin reductase at 1.7 Å resolution:oxidized, reduced and 2′phospho-5′ AMP bound states. J Mol Biol 247: 125–145PubMedCrossRefGoogle Scholar
  60. Buchanan BB, Schürmann P, Wolosiuk RA and Jacquot J-P (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res 73: 215–222PubMedCrossRefGoogle Scholar
  61. Butler WL (1962) Effects of red and far-red light on the fluorescence yield of chlorophyll in vivo. Biochim Biophys Acta 64: 309–317PubMedCrossRefGoogle Scholar
  62. Calvin M (1989) Forty years of photosynthesis and related activities. Photosynth Res 23: 3–16Google Scholar
  63. Calvin M, Bassham JA and Benson AA (1950) Chemical transformations in photosynthesis. Fed Proc 9: 524–534PubMedGoogle Scholar
  64. Carrel CJ, Zhang H, Cramer WA and Smith JL (1997) Biological diversity and identity in photosynthesis and respiration: structure of the lumen — side domain of the chloroplast Rieske protein. Structure 5: 1613–1625CrossRefGoogle Scholar
  65. Chapman M, Suh SW, Cascio D, Smith WW and Eisenberg D (1987) Sliding-layer conformational change limited by the quaternary structure of plant RuBisCO. Nature 329: 354–356PubMedCrossRefGoogle Scholar
  66. Chapman MS, Suh SW, Curmi PMG, Cascio D, Smith WW and Eisenberg DS (1988) Tertiary structure of plant RuBisCO: Domains and their contacts. Science 241: 71–74PubMedGoogle Scholar
  67. Clayton RK (1963) Toward the isolation of a photochemical reaction center in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 75: 312–323PubMedCrossRefGoogle Scholar
  68. Clayton RK (2002) Research on photosynthetic reaction centers from 1932 to 1987. Photosynth Res 73: 63–71PubMedCrossRefGoogle Scholar
  69. Cohen Y, Padan E and Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123: 855–861PubMedGoogle Scholar
  70. Colman PM, Freeman HC, Guss JM, Murata M, Noriss VA, Ramshaw JAM and Verikatappa MP (1978) X-ray crystal structure of plastocyanin at 2.7 Å resolution. Nature 257: 319–324CrossRefGoogle Scholar
  71. Commoner B, Heise JJ and Townsend J (1956) Light-induced paramagnetism in chloroplasts. Proc Natl Acad Sci USA 42: 710–718PubMedCrossRefGoogle Scholar
  72. Cramer WA (2004) Ironies in photosynthetic electron transport: a personal perspective. Photosynth Res 80: 293–305PubMedCrossRefGoogle Scholar
  73. Crane FL (1959) Isolation of two quinones with coenzyme Q activity from alfalfa. Plant Physiol 34: 546–551PubMedGoogle Scholar
  74. Crofts AR (2004) The Q-cycle — a personal perspective. Photosynth Res 80: 223–243PubMedCrossRefGoogle Scholar
  75. Dastur RH and Mehta RJ (1935) The study of the effect of blue-violet rays on photosynthesis. Ann Bot 49: 809–821Google Scholar
  76. Davenport HE (1960) A protein from leaves catalysing the reduction of metmyoglobin and triphospho-pyridine nucleotide in illuminated chloroplasts. Biochem J 77: 471–477PubMedGoogle Scholar
  77. Davenport HE and Hill R (1952) The preparation and some properties of cytochrome f. Proc R Soc London Ser B 139: 327–345Google Scholar
  78. Davenport HE, Hill R and Whatley FR (1952) A natural factor catalyzing reduction of methemoglobin by isolated chloroplasts. Proc R Soc London Ser B 139: 346–358Google Scholar
  79. Debuchy R, Purton S and Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8: 2803–2809PubMedGoogle Scholar
  80. de Kouchkovsky Y (2002) The laboratory of photosynthesis and its successors at Gif-sur-Yvette, France. Photosynth Res 73: 295–303PubMedCrossRefGoogle Scholar
  81. de Saussure NTh (1804) Recherches chimique sur la vegetation. Nyon, ParisGoogle Scholar
  82. Deisenhofer J and Michel H (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis (Nobel lecture). EMBO J 8: 2149–2169PubMedGoogle Scholar
  83. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density maps at 3 Angstrom resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398PubMedCrossRefGoogle Scholar
  84. Delosme R (2003) On some aspects of photosynthesis revealed by photoacoustic studies: a critical evaluation. Photosynth Res 76: 289–301PubMedCrossRefGoogle Scholar
  85. Delosme R and Joliot P (2002) Period 4 oscillations in chlorophyll a fluorescence. Photosynth Res 73: 165–168PubMedCrossRefGoogle Scholar
  86. Demmig-Adams B (2003) Linking the xanthophyll cycle with thermal energy dissipation. Photosynth Res 76: 73–80PubMedCrossRefGoogle Scholar
  87. Dèpege N, Bellafiore S and Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 1572–1575PubMedCrossRefGoogle Scholar
  88. DeVault D (1984) Quantum-Mechanical Tunneling in Biological Systems (2nd edition). Cambridge University Press, Cambridge, UKGoogle Scholar
  89. DeVault D (1989) Tunneling enters biology. Photosynth Res 22: 5–10CrossRefGoogle Scholar
  90. DeVault D and Chance B (1966) Studies of photosynthesis using a pulsed laser: Temperature dependency of cytochrome oxidation rate in Chromatium vinosum. Evidence for tunneling. Biophys J 6: 825–847PubMedGoogle Scholar
  91. Dismukes GC and Siderer Y (1980) EPR spectroscopic observations of a manganese center associated with water oxidation in spinach chloroplasts. FEBS Lett 121: 78–80CrossRefGoogle Scholar
  92. Dorner RW, Kahn A and Wildman SG (1957) Synthesis and decay of the cytoplasmic proteins during the life of the tobacco leaf. J Biol Chem 229: 945–952PubMedGoogle Scholar
  93. Dutton HJ (1997) Carotenoid-sensitized photosynthesis. Photosynth Res 52: 175–185CrossRefGoogle Scholar
  94. Dutton HJ, Manning WM and Duggar BB (1943) Chlorophyll fluorescence and energy transfer in diatom Nitzschia closterium. J Phys Chem 47: 308–313CrossRefGoogle Scholar
  95. Duysens LNM (1952) Transfer of Excitation Energy in Photosynthesis. Doctoral thesis. State University, Utrecht, The NetherlandsGoogle Scholar
  96. Duysens LNM (1954) Reversible changes in the absorption spectrum of Chlorella upon illumination. Science 120: 353–354PubMedGoogle Scholar
  97. Duysens LNM (1989) The discovery of the two photosystems: A personal account. Photosynth Res 21: 61–80Google Scholar
  98. Duysens LNM, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190: 510–511PubMedCrossRefGoogle Scholar
  99. Eaglesham ARJ and Ellis RJ (1974) Protein synthesis in chloroplasts. II. Light-driven synthesis of membrane proteins by isolated pea chloroplasts. Biochim Biophys Acta 335: 396–407Google Scholar
  100. Edwards GE and Black Jr CC (1971) Isolation of mesophyll cells and bundle sheath cells from Digitaria sanguinalis (L.) Scop. leaves and a scanning microscopy study of the internal leaf cell morphology. Plant Physiol 47: 149–156PubMedGoogle Scholar
  101. Ellis RJ (2004) From chloroplasts to chaperones: how one thing led to another. Photosynth Res 80: 333–343CrossRefGoogle Scholar
  102. Emerson R and Arnold W (1932a) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420CrossRefPubMedGoogle Scholar
  103. Emerson R and Arnold W (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205CrossRefPubMedGoogle Scholar
  104. Emerson R and Chalmers RV (1958) Speculations concerning the function and phylogenetic significance of the accessory pigments of algae. Phycol Soc News Bull 11: 51–56Google Scholar
  105. Emerson R and Lewis CM (1941) Carbon dioxide exchange and the measurement of the quantum yield of photosynthesis. Am J Bot 28: 789–804CrossRefGoogle Scholar
  106. Emerson R and Lewis CM (1942) The photosynthetic efficiency of phycocyanin in Chroococus and the problem of carotenoid participation in photosynthesis. J Gen Physiol 25: 579–595CrossRefPubMedGoogle Scholar
  107. Emerson R and Lewis CM (1943) The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Am J Bot 30: 165–178CrossRefGoogle Scholar
  108. Emerson R and Rabinowitch E (1960) Red drop and role of auxiliary pigments in photosynthesis. Plant Physiol 35: 477–485PubMedGoogle Scholar
  109. Emerson R, Chalmers RV and Cederstrand CN (1957) Some factors influencing the long wave limit of photosynthesis. Proc Natl Acad Sci USA 43: 133–143PubMedCrossRefGoogle Scholar
  110. Engelmann TW (1882) Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum. Bot Z 40: 419–426Google Scholar
  111. Engelmann TW (1883) Farbe und Assimilation. Bot Z 41: 1–13, 17–29Google Scholar
  112. Engelmann TW (1884) Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot Z 44: 43–52, 64–69Google Scholar
  113. Evans MCW, Reeves SG and Cammack R (1974) Determination of the oxidation reduction potential of the bound iron-sulphur proteins of primary electron acceptor complex of Photosystem 1 in spinach chloroplasts. FEBS Lett 49: 111–114PubMedCrossRefGoogle Scholar
  114. Feher G (1998) Three decades of research in bacterial photosynthesis and the road leading to it: a personal account. Photosynth Res 55: 1–40CrossRefGoogle Scholar
  115. Ferguson WJ, Braunschweiger KI, Braunschweiger WR, Smith JR, McCormick JJ, Wasmann CC, Jarvis NP, Bell DH and Good NE (1980) Hydrogen ion buffers for biological research. Anal Biochem 104: 300–310PubMedCrossRefGoogle Scholar
  116. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1837PubMedCrossRefGoogle Scholar
  117. Fish LE, Kück U and Bogorad L (1985) Two partially homogeneous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of Photosystem I. J Biol Chem 260: 1413–1421PubMedGoogle Scholar
  118. Floyd RA, Chance B and DeVault D (1971) Low temperature photo-induced reactions in green leaves and chloroplasts. Biochim Biophys Acta 226: 103–112PubMedCrossRefGoogle Scholar
  119. Frasch WD and Sayre RT (2002) Remembering George Cheniae, who never compromised his high standards of science. Photosynth Res 70: 245–247CrossRefGoogle Scholar
  120. French CS (1961) Light, pigments and photosynthesis. In: McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life, pp 447–474. The Johns Hopkins Press, Baltimore, MarylandGoogle Scholar
  121. French CS and Anson ML (1941) Oxygen production by isolated chloroplasts. Am J Bot 28: 12s (abstract)Google Scholar
  122. Frenkel A (1954) Light induced phosphorylation by cell-free preparations of photosynthetic bacteria. J Am Chem Soc 76: 5568–5570CrossRefGoogle Scholar
  123. Fromme P and Mathis P (2004) Unraveling the Photosystem I reaction center: a history, or the sum of many efforts. Photosynth Res 80: 109–124PubMedCrossRefGoogle Scholar
  124. Gaffron H and Wohl K (1936) Zur Theorie der Assimilation. Naturwissenschaften 24: 81–90; 103–107CrossRefGoogle Scholar
  125. Gantt E and Conti S (1966) Phycobiliprotein localization in algae. In: Brookhaven Symposium in Biology No.19. Energy Conversion by the Photosynthetic Apparatus, 393–405. Biology Department, Brookhaven National Laboratory, Upton, New YorkGoogle Scholar
  126. Gantt E, Lipschultz CA and Zilinskas B (1976) Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim Biophys Acta 430: 375–388PubMedCrossRefGoogle Scholar
  127. Gest H (2000) Bicentenary homage to Dr. Jan Ingen-Housz, MD (1730–1799), pioneer of photosynthesis research. Photosynth Res 63: 183–190PubMedCrossRefGoogle Scholar
  128. Gest H (2002) History of the word photosynthesis and evolution of its definition. Photosynth Res 73: 7–10PubMedCrossRefGoogle Scholar
  129. Gest H (2004) Samuel Ruben’s contributions to research on photosynthesis and bacterial metabolism with radioactive carbon. Photosynth Res 80: 77–83PubMedCrossRefGoogle Scholar
  130. Gest H and Blankenship RE (2004) Time line of discoveries: anoxygenic bacterial photosynthesis. Photosynth Res 80: 59–70PubMedCrossRefGoogle Scholar
  131. Good N (1960) Activation of the Hill reaction by amines. Biochim Biophys Acta 40: 502–517PubMedCrossRefGoogle Scholar
  132. Good NE and Izawa S (1972) Hydrogen ion buffers. Meth Enzymol 24: 53–68PubMedCrossRefGoogle Scholar
  133. Goodin DB, Yachandra VK, Britt RD, Sauer K and Klein MP (1984) State of manganese in the photosynthetic apparatus. 3. Light-induced changes in X-ray absorption (K-edge) energies of manganese in photosynthetic membranes. Biochim Biophys Acta 767: 209–216CrossRefGoogle Scholar
  134. Govindjee (1989) E.L. Smith: the discovery of chlorophyll protein complex during 1937–1941. Photosynth Res 16: 291–292Google Scholar
  135. Govindjee (1995) Sixty-three years since Kautsky: cholorophyll a fluorescence. Aust J Plant Physiol 22: 131–160CrossRefGoogle Scholar
  136. Govindjee (1999a) On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: A historical note. Photosynth Res 59: 249–254CrossRefGoogle Scholar
  137. Govindjee (1999b) Carotenoids in photosynthesis: An historical perspective. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 1–19. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  138. Govindjee (2000) Milestones in photosynthesis Research. In: Yunus M, Pathre U and Mohanty P (eds) Probing Photosynthesis: Mechanisms, Regulation and Adaptation, pp 9–39. Taylor and Francis, LondonGoogle Scholar
  139. Govindjee and Gest H (eds) (2002a) Celebrating the millennium: historical highlights of photosynthesis research, Part 1. Photosynth Res 73: 1–308Google Scholar
  140. Govindjee and Gest H (2002b) Celebrating the millennium: historical highlights of photosynthesis research. Photosynth Res 73: 1–6CrossRefGoogle Scholar
  141. Govindjee and Krogmann D (2002) A list of personal perspectives with selected quotations, along with lists of tributes, historical notes, Nobel and Kettering awards related to photosynthesis. Photosynth Res 73: 11–20CrossRefGoogle Scholar
  142. Govindjee and Rabinowitch E (1960) Two forms of chlorophyll a in vivo with distinct photochemical functions. Science 132: 159Google Scholar
  143. Govindjee, Ichimura S, Cederstrand C and Rabinowitch E (1960) Effect of combining far-red light with shorter wave light in the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89: 322–323PubMedCrossRefGoogle Scholar
  144. Govindjee, Barber J, Cramer WA, Goedheer JHC, Lavorel J, Marcelle R and Zilinskas B (eds) (1986) Excitation and electron transfer in photosynthesis — special issue dedicated to Warren L Butler. Photosynth Res 10: 147–518Google Scholar
  145. Govindjee, Amesz J and Knox RS (1996) Photosynthetic unit: antenna and reaction centers. Photosynth Res 48: 1–319CrossRefGoogle Scholar
  146. Govindjee, Sestak Z and Peters WR (2002) The early history of ‘Photosynthetica’, ‘Photosynthesis Research’, and their publishers. Photosynthetica 40: 1–11CrossRefGoogle Scholar
  147. Govindjee, Beatty JT and Gest H (eds) (2003a) Celebrating the millennium: historical highlights of photosynthesis research, Part 2. Photosynth Res 76: 1–462Google Scholar
  148. Govindjee, Beatty JT and Gest H (2003b) Celebrating the millennium: historical highlights of photosynthesis research, Part 2. Photosynth Res 76: 1–11 (Editorial)CrossRefGoogle Scholar
  149. Govindjee, Allen JF and Beatty JT (2004a) Celebrating the millennium: historical highlights of photosynthesis research, Part 3. Photosynth Res 80: 1–13 (Editorial)PubMedCrossRefGoogle Scholar
  150. Govindjee, Allen JF and Beatty JT (2004b) Celebrating the millennium: historical highlights of photosynthesis research, Part 3. Photosynth Res 80: 1–466PubMedCrossRefGoogle Scholar
  151. Govindjee R, Thomas JB and Rabinowitch E (1961) Second Emerson effect in the Hill reaction of Chlorella cells with quinone as oxidant. Science 132: 421Google Scholar
  152. Govindjee R, Govindjee and Hoch G (1962) The Emerson enhancement effect in TPN-photoreduction by spinach chloroplasts. Biochem Biophys Res Comm 9: 222–225CrossRefGoogle Scholar
  153. Goyal A (1998) Nathan Edward Tolbert (1919–1998). Ed Tolbert and his love for science: a journey from sheep ranch continues. Photosynth Res 65: 1–6CrossRefGoogle Scholar
  154. Gregorieva G and Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett B 127: 192–210Google Scholar
  155. Grossman AR (2003) A molecular understanding of complementary chromatic adaptation. Photosynth Res 76: 207–215PubMedCrossRefGoogle Scholar
  156. Haehnel W, Hesse V and Propper A (1980) Electron transfer from plastocyanin to P700. FEBS Lett 111: 79–82CrossRefGoogle Scholar
  157. Hales S (1727) Vegetable Staticks, or, an Account of Some Statistical Experiments on the Sap in Vegetation. W. Innys, LondonGoogle Scholar
  158. Hangarter RP and Gest H (2004) Pictorial demonstrations of photosynthesis. Photosynth Res 80: 421–425PubMedCrossRefGoogle Scholar
  159. Hatch MD (2002) C4 photosynthesis: discovery and resolution. Photosynth Res 73: 251–256PubMedCrossRefGoogle Scholar
  160. Hatch MD and Slack CR (1966) Photosynthesis in sugar cane leaves: a new carboxylation reaction and the pathway of sugar formation. Biochem J 101: 103–111PubMedGoogle Scholar
  161. Hauska G (2004) The isolation of a functional cytochrome b 6 f complex: from lucky encounter to rewarding experiences. Photosynth Res 80: 277–291PubMedCrossRefGoogle Scholar
  162. Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73: 223–231PubMedCrossRefGoogle Scholar
  163. Heldt H-W (2002) Three decades in transport business: studies of metabolite transport in chloroplasts — a personal perspective. Photosynth Res 73: 265–272PubMedCrossRefGoogle Scholar
  164. Hill R (1937) Oxygen evolution by isolated chloroplasts. Nature 139: 881–882Google Scholar
  165. Hill R (1939) Oxygen production by isolated chloroplasts. Proc R Soc London Ser B 127: 192–210CrossRefGoogle Scholar
  166. Hill R (1965) The biochemist’s green mansions. The photosynthetic electron transport chain in plants. Essays Biochem 1: 121–151PubMedGoogle Scholar
  167. Hill R (1972) Joseph Priestley (1733–1804) and his discovery of photosynthesis in 1771. In: Forti G, Avron M and Melandri A (eds) Photosynthesis, Two Centuries after its Discovery by Joseph Priestley, pp 1–18. Dr Junk Publishers, The Hague, The NetherlandsGoogle Scholar
  168. Hill R and Bendall F (1960) Function of the cytochrome components in chloroplasts: A working hypothesis. Nature 186: 136–137CrossRefGoogle Scholar
  169. Hill R and Bonner Jr WD (1961) The nature and possible function of chloroplast cytochromes. In: McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life, pp 424–435. The Johns Hopkins Press, Baltimore, MarylandGoogle Scholar
  170. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K and Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol Gen Genet 217: 185–194PubMedGoogle Scholar
  171. Hiyama T and Ke B (1971a) A new photosynthetic pigment, ‘P430’: its possible role as the primary acceptor of Photosystem I. Proc Natl Acad Sci USA 63: 1010–1013CrossRefGoogle Scholar
  172. Hiyama T and Ke B (1971b) A further study of P430: a possible primary acceptor of Photosystem I. Arch Biochem Biophys 147: 99–108PubMedCrossRefGoogle Scholar
  173. Hoff AJ and Aartsma TJ (2002) Obituary: Jan Amesz (11 March 1934–29 January 2001). Photosynth Res 71: 1–4PubMedCrossRefGoogle Scholar
  174. Homann PH (2002) Chloride and calcium in Photosystem II: from effects to enigma. Photosynth Res 73: 169–175PubMedCrossRefGoogle Scholar
  175. Homann PH (2003) Hydrogen metabolism of green algae: discovery and early research — a tribute to Hans Gaffron and his coworkers. Photosynth Res 76: 93–103PubMedCrossRefGoogle Scholar
  176. Horecker BL, Hurwitz J and Weissbach A (1956) The enzymatic synthesis and properties of ribulose-1,5-diphosphate. J Biol Chem 218: 785–794PubMedGoogle Scholar
  177. Huzisige H and Ke B (1993) Dynamics of the history of photosynthesis research. Photosynth Res 38: 185–209CrossRefGoogle Scholar
  178. Ingen-Housz J (1779) Experiments upon Vegetables, Discovering Their Great Power of Purifying the Common Air in the Sunshine and of Injuring it in the Shade and at Night; to Which is Joined a New Method of Examining the Accurate Degree of Salubrity of the Atmosphere. Elmsley and Payne, LondonGoogle Scholar
  179. Ingen-Housz J (1796) Food of Plants and the Renovation of the Soil. Appendix to the Outlines of the Fifteenth Chapter of the Proposed General Report from the Board of Agriculture. Elmsley and Payne, LondonGoogle Scholar
  180. Jacoby WB, Brummond DO and Ochoa S (1956) Formation of 3-phophoglyceric acid by carbon dioxide fixation with spinach leaf enzymes. J Biol Chem 218: 811–822Google Scholar
  181. Jagendorf AT (1998) Chance, luck and photosynthesis research: An inside story. Photosynth Res 57: 215–229CrossRefGoogle Scholar
  182. Jagendorf AT (2002) Photophosphorylation and the chemiosmotic perspective. Photosynth Res 73: 233–241PubMedCrossRefGoogle Scholar
  183. Jagendorf AT and Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55: 170–177PubMedCrossRefGoogle Scholar
  184. Jensen RG and Bassham JA (1966) Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci USA 56: 1095–1101PubMedCrossRefGoogle Scholar
  185. Joliot P (1996) Rene Wurmser. Obituary. Photosynth Res 48: 321–326CrossRefGoogle Scholar
  186. Joliot P (2003) Period-four oscillation of the flash-induced oxygen formation in photosynthesis. Photosynth Res 76: 65–72PubMedCrossRefGoogle Scholar
  187. Joliot P and Joliot A (2003) Excitation transfer between photosynthetic units: the 1964 experiment. Photosynth Res 76: 241–245PubMedCrossRefGoogle Scholar
  188. Joliot P, Barbieri G and Chabaud R (1969) Un nouveau modele des centres photochimiques du systeme II. Photochem Photobiol 10: 309–329Google Scholar
  189. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three dimensional structure of cyanobacterial Photosystem I at 2.5 Angstrom resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  190. Kamen M (1963) Primary Processes in Photosynthesis. Academic Press, New YorkGoogle Scholar
  191. Kamen M (1986) On creativity of eye and ear: a commentary on the career of T.W. Engelmann. Proc Am Phil Soc 130: 232–246Google Scholar
  192. Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7 Angstrom resolution. Proc Natl Acad Sci USA 100: 98–103PubMedCrossRefGoogle Scholar
  193. Kaneko T, Sato S, Kotami H, Tanaka M and Sugiura M (1996) Synechocystis sp. Strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein regions. DNA Res 3: 109–136PubMedCrossRefGoogle Scholar
  194. Karpilov YS (1960) The distribution of radioactive carbon 14 amongst the products of photosynthesis of maize. Trudy Kazansk Sel’shokoz Institute 41: 15–24Google Scholar
  195. Karrer P (1934) Über Carotinoidfarbstoffe. Z Angew Chemie 42: 918–924Google Scholar
  196. Katoh S (2003) Early research on the role of plastocyanin in photosynthesis. Photosynth Res 76: 255–261PubMedCrossRefGoogle Scholar
  197. Kautsky H, Appel W and Armann H (1960) Chlorophyllfluoreszenz und Kohlensäureassimilation. XIII. Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem Z 332: 227–290Google Scholar
  198. Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  199. Ke B (2002) P430: a retrospective, 1971–2001. Photosynth Res 73: 207–214PubMedCrossRefGoogle Scholar
  200. Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Wallsgrove RM and Miflin BJ (1978) Photorespiratory nitrogen cycle. Nature 275: 741–743CrossRefGoogle Scholar
  201. Khanna R, Graham JR, Myers J and Gantt E (1983) Phycobilisome composition and possible relationship to reaction centers. Arch Biochem Biophys 224: 534–542PubMedCrossRefGoogle Scholar
  202. Kindle KL, Schnell RA, Fernandez E and Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109: 2589–2601PubMedCrossRefGoogle Scholar
  203. Kirby JA, Robertson AS, Smith JP, Cooper SR and Klein MP (1981) The site of manganese in the photosynthetic apparatus. 1. EXAFS studies on chloroplasts and di m-oxo bridged di-manganese compounds. J Am Chem Soc 103: 5529–5537CrossRefGoogle Scholar
  204. Klimov (2003) Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. Photosynth Res 76: 247–253PubMedCrossRefGoogle Scholar
  205. Klimov VV, Klevanik AV, Shuvalov VA and Krasnovsky AA (1977) Reduction of pheophytin in primary light reaction of Photosystem II. FEBS Lett 82: 183–186PubMedCrossRefGoogle Scholar
  206. Kok B (1956) On the reversible absorption change at 705μm in photosynthetic organisms. Biochim Biophys Acta 22: 399–401PubMedCrossRefGoogle Scholar
  207. Kok B (1959) Light-induced absorption changes in photosynthetic organisms. II. A split-beam difference spectrophotometer. Plant Physiol 34: 184–192PubMedGoogle Scholar
  208. Kok B and Hoch G (1961) Spectral changes in photosynthesis. In: McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life, pp 397–423. The Johns Hopkins Press, Baltimore, MarylandGoogle Scholar
  209. Kok B, Forbush M and McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution 1. Photochem Photobiol 11: 457–475PubMedGoogle Scholar
  210. Kortschak HP, Hartt CE and Burr GO (1965) Carbon dioxide fixation in sugarcane leaves. Plant Physiol 40: 209–213PubMedGoogle Scholar
  211. Krasnovsky AA (1948) Reversible photochemical reduction of chlorophyll by ascorbic acid. Dokl Akad Nauk SSSR 60: 421–424Google Scholar
  212. Krasnovsky Jr AA (2003) Chlorophyll isolation, structure and function: major landmarks of the early history of research in the Russian Empire and the Soviet Union. Photosynth Res 76: 389–403CrossRefGoogle Scholar
  213. Krogmann DW, Jagendorf AT and Avron M (1959) Uncouplers of spinach chloroplast photophosphorylation. Plant Physiol 34: 272–277PubMedGoogle Scholar
  214. Kuang Ting-Yun, Xu Chunhe, Li Liang-Bi, Shen Yun-Kang (2003) Photosynthesis research in China. Photosynth Res 76: 451–458PubMedCrossRefGoogle Scholar
  215. Kühlbrand W (1984) Three dimensional structure of the light-harvesting chlorophyll a/b protein complex. Nature 307: 478–480CrossRefGoogle Scholar
  216. Kühlbrand W and Wang DN (1991) Three dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350: 130–134CrossRefGoogle Scholar
  217. Kühlbrand W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light harvesting complex by electron crystallography. Nature 367: 614–621CrossRefGoogle Scholar
  218. Kühn R (1935) Plant pigments. Ann Rev Biochem 4: 479–496CrossRefGoogle Scholar
  219. Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009–1014PubMedCrossRefGoogle Scholar
  220. Lane N (2002) Oxygen. The Molecule That Made the World. Oxford University Press, OxfordGoogle Scholar
  221. Larkum AWD (2003) A tribute: contributions of Henrik Lundegårdh to photosynthesis. Photosynth Res 76: 105–110PubMedCrossRefGoogle Scholar
  222. Lavorel J (1975) Luminescence. In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 223–317. Academic Press, New YorkGoogle Scholar
  223. Lewin RA (2002) Prochlorophyta — a matter of class distinctions. Photosynth Res 73: 59–61PubMedCrossRefGoogle Scholar
  224. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Angstrom resolution. Nature 428: 287–292PubMedCrossRefGoogle Scholar
  225. Losada M, Whatley FR and Arnon DI (1961) Separation of two light reactions in non-cyclic phosphorylation of green plants. Nature 190: 606–610PubMedCrossRefGoogle Scholar
  226. Lubimenko VN (1910) Concentration of chlorophyll in chlorophyll grain and energy of photosynthesis. Trudy St Petersb Society of Naturalists 41: 1–266 [in Russian]Google Scholar
  227. Lubimenko VN and Brilliant VA (1924) The Color of Plants. Plant Pigments. Gosizdat Publisher, Leningrad [in Russian]Google Scholar
  228. Lynch VA and French CS (1957) β Carotene, an active component of chloroplasts. Arch Biochem Biophys 70: 382–391PubMedCrossRefGoogle Scholar
  229. Malkin R and Bearden AJ (1971) Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperatures as detected by EPR spectroscopy. Proc Natl Acad Sci USA 68: 16–19PubMedCrossRefGoogle Scholar
  230. Marcus RA (1996) Electron transfer reactions in chemistry. Theory and experiment (Chapter 10). In: Bendall DS (ed) Protein Electron Transfer. Bios Scientific, OxfordGoogle Scholar
  231. Martin PG (1979) Amino acid sequence of the small subunit of ribulose-1,5-bisphosphate carboxylase from spinach. Aust J Plant Physiol 6: 401–408Google Scholar
  232. Martin W and Kowallik KV (1999) Annotated English translation of Mereschkowsky’s 1905 paper Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Eur J Phycol 34: 287–295Google Scholar
  233. Martinez S, Huang D, Sczcepaniak A, Cramer WC and Smith JL (1994) Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2: 95–105PubMedCrossRefGoogle Scholar
  234. Mayaudon J (1957) Study of association between the main nucleoprotein of green leaves and carboxdismutase. Enzymologia 18: 345–354Google Scholar
  235. Mayaudon J, Benson AA and Calvin M (1957) Ribulose-1,5-diphosphate from and CO2 fixation by Tetragonia expansa leaves extract. Biochim Biophys Acta 23: 342–351PubMedCrossRefGoogle Scholar
  236. Mayer JR (1845) Die organische Bewegung in ihrem Zussamenhag mit dem Stoffwechsel: Ein Beitrag zur Naturkunde. Verlag der C. Drechsler’schen Buchhandlung, HeilbronnGoogle Scholar
  237. McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life. The Johns Hopkins Press, Baltimore, MarylandGoogle Scholar
  238. McIntosh L, Poulson C and Bogorad L (1980) Chloroplast gene sequence for the large subunit of ribulose bisphosphate carboxylase of maize. Nature 288: 556–560CrossRefGoogle Scholar
  239. Menke W (1990) Retrospective of a botanist. Photosynth Res 25: 77–82CrossRefGoogle Scholar
  240. Merchant S and Bogorad L (1986) Regulation by copper of the expression of plastocyanin and cytochrome c-552 in Chlamydomonas reinhardi. Mol Cell Biol 6: 462–469PubMedGoogle Scholar
  241. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25: 593–604Google Scholar
  242. Mimuro M (2002) Visualization of excitation energy transfer processes in plants and algae. Photosynth Res 73: 127–132CrossRefGoogle Scholar
  243. Mitchell P (1961a) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148PubMedCrossRefGoogle Scholar
  244. Mitchell P (1961b) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Res, Bodmin, Cornwall, UKGoogle Scholar
  245. Mitchell P (1975) Protonmotive Q-cycle-general formulation. FEBS Lett 59: 137–139PubMedCrossRefGoogle Scholar
  246. Mitchell P (1976) Possible molecular mechanism of the proton motive function of cytochrome systems. J Theor Biol 62: 327–367PubMedCrossRefGoogle Scholar
  247. Myers J (2002) In one era and out the other. Photosynth Res 73: 21–28PubMedCrossRefGoogle Scholar
  248. Myers J and French CS (1960) Evidences from action spectra for a specific participation of chlorophyll b in photosynthesis. J Gen Physiol 43: 723–736PubMedCrossRefGoogle Scholar
  249. Nelson N and Ben-Shem A (2002) Photosystem I reaction center: past and future. Photosynth Res 73: 193–206PubMedCrossRefGoogle Scholar
  250. Nelson N and Newman J (1972) Isolation of a cytochrome b 6 f particle from chloroplasts. J Biol Chem 247: 1817–1824PubMedGoogle Scholar
  251. Ochoa S and Vishniac W (1951) Photochemical reduction of pyridine nucleotides by spinach grana and coupled to carbon dioxide fixation. Nature 167: 768–769PubMedCrossRefGoogle Scholar
  252. Ogawa T (2003) Physical separation of chlorophyll protein complexes. Photosynth Res 76: 227–232PubMedCrossRefGoogle Scholar
  253. Ogren WL (2003) Affixing the O to rubisco: discovering the source of photorespiratory glycolate and its regulation. Photosynth Res 76: 53–63PubMedCrossRefGoogle Scholar
  254. Ogren WL and Bowes G (1971) Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biol 230: 159–160PubMedGoogle Scholar
  255. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sanao T, Sano S, Umesone K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574CrossRefGoogle Scholar
  256. Osterhout WJV (1918a) Dynamical aspects of photosynthesis. Proc Natl Acad Sci USA 4: 85–91PubMedCrossRefGoogle Scholar
  257. Osterhout WJV (1918b) On the dynamics of photosynthesis. J Gen Physiol 1: 1–16CrossRefPubMedGoogle Scholar
  258. Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Ann Rev Plant Physiol 30: 27–40CrossRefGoogle Scholar
  259. Papageorgiou GC (2003) Photosynthesis research in Greece: a historical snapshot (1960–2001). Photosynth Res 76: 427–433PubMedCrossRefGoogle Scholar
  260. Park R and Sane PV (1981) Distribution of function and structure in chloroplast lamellae. Annu Rev Plant Physiol 22: 395–430CrossRefGoogle Scholar
  261. Parrett KC, Mehari T and Golbeck JH (1990) Resolution and reconstitution of the cyanobacterial Photosystem I complex. Biochim Biophys Acta 1015: 341–352CrossRefGoogle Scholar
  262. Parson WW (1989) Don DeVault. A tribute on the occasion of his retirement. Photosynth Res 22: 11–13CrossRefGoogle Scholar
  263. Parson WW (2003) Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account. Photosynth Res 76: 81–92PubMedCrossRefGoogle Scholar
  264. Pearlstein RM (2002) Photosynthetic exciton theory in the 1960s. Photosynth Res 73: 119–126PubMedCrossRefGoogle Scholar
  265. Pelletier J and Caventou JB (1818) Sur la matiere verte des feuilles. Ann Chim Phys Ser 2:9: 194–196Google Scholar
  266. Pfannschmidt T, Nilsson A and Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628CrossRefGoogle Scholar
  267. Pirson A (1994) Sixty three years in algal physiology and photosynthesis. Photosynth Res 40: 207–222CrossRefGoogle Scholar
  268. Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determinations of chlorophylls a and b. Photosynth Res 73: 149–156PubMedCrossRefGoogle Scholar
  269. Portis AR and Salvucci ME (2002) The discovery of Rubisco activase — yet another story of serendipity. Photosynth Res 73: 257–264CrossRefGoogle Scholar
  270. Priestley J (1772) Observations on different kinds of air. Phil Trans R Soc London 62: 147–264Google Scholar
  271. Qyuale JR, Fuller RC, Benson AA and Calvin M (1954) Enzymatic carboxylation of ribulose diphosphate. J Am Chem Soc 76: 3610–3612CrossRefGoogle Scholar
  272. Rabinowitch EI (1945) Photosynthesis and Related Processes, Vol I. Chemistry of Photosynthesis, Chemosynthesis and Related Processes in vitro and in vivo. See Chapter 2, pp 12–28. Interscience Publishers, New York, 599 ppGoogle Scholar
  273. Rabinowitch EI (1951) Photosynthesis and Related Processes, Vol II, Part 1. Spectroscopy and Fluorescence of Photosynthetic Pigments; Kinetics of Photosynthesis, pp 603–1208. Interscience Publishers, New YorkGoogle Scholar
  274. Rabinowitch EI (1956) Photosynthesis and Related Processes, Vol II (Part 2). Kinetics of Photosynthesis (continued); Addenda to Vol I and Vol II, Part 1, pp 1211–2088. Interscience Publishers, New YorkGoogle Scholar
  275. Rabinowitch EI and Govindjee (1961) Different forms of chlorophyll a in vivo and their photochemical function. In: McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life, pp 378–391. The Johns Hopkins Press, Baltimore, MarylandGoogle Scholar
  276. Rabinowitch EI and Weiss J (1937) Reversible oxidation of chlorophyll. Proc R Soc London Ser A 162: 251–267CrossRefGoogle Scholar
  277. Raghavendra AS, Sane PV and Mohanty P (2003) Photosynthesis research in India: from yield physiology to molecular biology. Photosynth Res 76: 435–450PubMedCrossRefGoogle Scholar
  278. Reed DW and Clayton R (1968) Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides. Biochem Biophys Res Commun 30: 471–475PubMedCrossRefGoogle Scholar
  279. Renger G (2003) Apparatus and mechanism of photosynthetic oxygen evolution: historical lines of research and current state of the art. Photosynth Res 76: 269–288PubMedCrossRefGoogle Scholar
  280. Renger G and Govindjee (eds) (1993) How plants and cyanobacteria make oxygen: 25 years of period four oscillations. Photosynth Res 38: 211–469Google Scholar
  281. Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29: 209–230PubMedCrossRefGoogle Scholar
  282. Rochaix JD (2002) The three genomes of Chlamydomonas. Photosynth Res 73: 285–293PubMedCrossRefGoogle Scholar
  283. Ruben S and Kamen MD (1941) Long-lived radioactive carbon: C14. Phys Rev 59: 349–354CrossRefGoogle Scholar
  284. Ruben S, Kamen MD, Hassid WZ and DeVault D (1939) Photosynthesis with radiocarbon. Science 90: 570–571PubMedGoogle Scholar
  285. Sachs J (Saxa Julia) (1853) Rosmluva o růstu bylin. Živa Časopis Přírodnický 1: 139–146Google Scholar
  286. Sachs J (1862) Über den Einfluss des Lichtes auf die Bildung des Amylums in den Chlorophyllkornern. Bot Z 20: 365–373Google Scholar
  287. Sachs J (1864) Über die Auflösung und Wiederbildung des Amylums in den Chlorophyllkornern bei wechselnder Beleuchtung. Bot Z 22: 189–294Google Scholar
  288. Sachs J (1892) Über Pflanzen-physiologie. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  289. San Pietro A and Lang HM (1956) Accumulation of reduced pyridine nucleotides by illuminated grana. Science 124: 118–119Google Scholar
  290. Satoh K (2003) The identification of the Photosystem II reaction center. Photosynth Res 76: 233–240PubMedCrossRefGoogle Scholar
  291. Scarisbrick R (1947) Haematin compounds in plants. Ann Rep Progr Chem 44: 226–236Google Scholar
  292. Scheele CW (1781) Traite chimique de l’air et du feu. Rue et Hôtel Serpente, Academie Royale des Sciences, Paris, FranceGoogle Scholar
  293. Schneider G, Lindqvist Y, Brändén C-I and Lorimer GH (1986) Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9å resolution. EMBO J 5: 3409–3415PubMedGoogle Scholar
  294. Seibert M and Wasielewski MR (2003) The isolated Photosystem II reaction center — first attempts to directly measure the kinetics of primary charge separation. Photosynth Res 76: 263–268PubMedCrossRefGoogle Scholar
  295. Senebier J (1783) Memoires physico-chimiques sur l’influence de la lumiere solaire pour modifier les etres des trios regnes de la nature et surtout ceux du regne vegetal. B. Chirol, GenevaGoogle Scholar
  296. Senebier J (1788) Experiences sur l’action de la lumiere solaire dans la vegetation. Chez Briande, ParisGoogle Scholar
  297. Shen Y-K (1994) Dynamic approaches to the mechanism of photosynthesis. Photosynth Res 39: 1–13CrossRefGoogle Scholar
  298. Shen Y-K and Shen GM (1962) The light intensity effect and intermediate steps of photophosphorylation. Sci Sinica 11: 1097–1106Google Scholar
  299. Shestakov SV (2002) Gene-targeted and site-directed mutagenesis of photosynthesis genes in cyanobacteria. Photosynth Res 73: 279–284PubMedCrossRefGoogle Scholar
  300. Shibata K (1957) Spectroscopic studies on chlorophyll formation in intact leaves. J Biochem 44: 147–173Google Scholar
  301. Shin M (2004) How is ferredoxin-NADP reductase involved in the NADP photoreduction of chloroplasts? Photosynth Res 80: 307–313PubMedCrossRefGoogle Scholar
  302. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda K, Takaiwa F, Kato A, Tohdoh N, Shimada H and Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049PubMedGoogle Scholar
  303. Sironval C, Michel-Wolwertz MR and Madsen A (1965) On the nature and possible functions of the 673-and 684-nm forms in vivo of chlorophyll. Biochim Biophys Acta 94: 344–354PubMedGoogle Scholar
  304. Smith EL (1938) Solutions of chlorophyll-protein compounds (phyllochlorins) extracted from spinach. Science 88: 170–171PubMedGoogle Scholar
  305. Smith JHC and Young VMK (1956) Chlorophyll formation and accumulation in plants. In: Hollaender A (ed) Radiation Biology, Vol 3, pp 393–442. McGraw Hill Book, New YorkGoogle Scholar
  306. Soret JL (1883) Analyse spectrale: Sur le spectre d’absorption du song dans la partie violette et ultra-violette. Compt Rend 97: 1269–1273Google Scholar
  307. Spoehr HA (1919) The development of conceptions of photosynthesis since Ingen-housz. Sci Mon July: 32–46Google Scholar
  308. Spoehr HA and McGee JM (1924) Absorption of carbon dioxide the first step in photosynthesis. Science 59: 513–514Google Scholar
  309. Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76: 185–196PubMedCrossRefGoogle Scholar
  310. Staub JM and Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4: 39–45PubMedCrossRefGoogle Scholar
  311. Stemler AJ (2002) The bicarbonate effect, oxygen evolution and the shadow of Otto Warburg. Photosynth Res 73: 177–183PubMedCrossRefGoogle Scholar
  312. Stokes GG (1852) On the change of refrangibility of light. Phil Trans R Soc London 142: 463–562Google Scholar
  313. Strehler B and Arnold WA (1951) Light production by green plants. J Gen Physiol 34: 809–820PubMedCrossRefGoogle Scholar
  314. Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418PubMedCrossRefGoogle Scholar
  315. Sugiura M (2003) History of chloroplast genomics. Photosynth Res 76: 371–377PubMedCrossRefGoogle Scholar
  316. Tagawa K and Arnon DI (1962) Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 195: 537–543PubMedCrossRefGoogle Scholar
  317. Tagawa K, Tsujimoto HY and Arnon DI (1963) Analysis of photosynthetic reactions by the use of monochromatic light. Nature 199: 1247–1252PubMedCrossRefGoogle Scholar
  318. Tamura N and Cheniae G (1987) Photoactivation of water oxidizing complex in Photosystem II membranes depleted of manganese and extrinsic proteins. I. Biochemical and kinetic characterization. Biochim Biophys Acta 890: 179–194CrossRefGoogle Scholar
  319. Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynth Res 76: 197–205CrossRefGoogle Scholar
  320. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815CrossRefGoogle Scholar
  321. Thornber JP (1975) Chlorophyll proteins-light harvesting and reaction center components of plants. Ann Rev Plant Physiol Plant Mol Biol 26: 127–158CrossRefGoogle Scholar
  322. Thornber JP, Ridley SM and Bailey JL (1965) The isolation and partial characteristics of Fraction I protein from spinach-beet chloroplasts. Biochem J 96: 29c–31cGoogle Scholar
  323. Thorne SW (1971) The greening of etiolated bean leaves. I. The initial photoconversion process. Biochim Biophys Acta 226: 113–127PubMedCrossRefGoogle Scholar
  324. Thunberg T (1923) Ein Beitrag zur Theorie der Kohlensäureassimilation. Zeitschr F Physikal Chem 106: 305–312Google Scholar
  325. Timiriazeff CA (1868) A set-up for investigation of air-nutrition of leaves and application of artificial illumination to the studies of this type. Trudy I Meeting of the Russian naturalists and physicians. St. Petersburg, 1868, Botanical section, p 17 and 74–80 [in Russian]Google Scholar
  326. Timiriazeff CA (1874) Sur l’action de la lumiere dans la decomposition de l’acide carbonique par la granule de chlorophylle. International Botanical Congress, Firenze, Italy, May, pp 108–117Google Scholar
  327. Timiriazeff CA (1875) On the utilization of light by plants. Doctoral dissertation. The University of St. Petersburg, Russia [in Russian]Google Scholar
  328. Timiriazeff CA (1877) Sur la decomposition de l’acide carbonique dans le spectre solaire par le particles verte des végétaux. Compt Rend 84: 1236–1239Google Scholar
  329. Tolmach LJ (1951) Effect of triphosphopyridine nucleotide upon oxygen evolution and carbon dioxide fixation by illuminated chloroplasts. Nature 167: 946–948PubMedCrossRefGoogle Scholar
  330. Trebst A (1975) Energy conservation in photosynthetic electron transport of chloroplasts. Ann Rev Plant Physiol 25: 423–458CrossRefGoogle Scholar
  331. Trown PW (1965) An improved method for the isolation of carboxydismutase: Probable identity with Fraction I protein and the protein moiety of protochlorophyll holochrome. Biochemistry 4: 908–918PubMedCrossRefGoogle Scholar
  332. Tsukihara T, Fukuyama K, Nakamura M, Katsube M, Tanaka N, Kakudo M, Wada K, Hase T and Matsubara H (1981) X-ray analysis of a [2Fe-2S] ferredoxin from Spirulina platensis. Main chain fold and location of side chains at 2.5Å. J Biochem Jpn 90: 1763–1773Google Scholar
  333. Tswett M (1906) Absorption Analyse und Chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. Ber Deut Bot Ges 24: 384–393Google Scholar
  334. van Ginkel G and Goedheer JHC (1991) Jan Bartolomeus Thomas (1907–1991). Photosynth Res 30: 65–69CrossRefGoogle Scholar
  335. Van Niel CB (1931) On the morphology and physiology of the purple and the green bacteria. Arch Mikrobiol 3: 1–12CrossRefGoogle Scholar
  336. Van Niel CB (1941) The bacterial photosyntheses and their importance for the general problem of photosynthesis. Adv Enzymol 1: 263–328Google Scholar
  337. Van Noort G and Wildman SG (1964) Enzymatic properties of Fraction-I protein isolated by a specific antibody. Biochim Biophys Acta 90: 309–317Google Scholar
  338. van Rensen JJS (2002) Role of bicarbonate at the acceptor side of Photosystem II. Photosynth Res 73: 185–192PubMedCrossRefGoogle Scholar
  339. Vass I (2003) The history of photosynthetic thermoluminescence. Photosynth Res 76: 303–318PubMedCrossRefGoogle Scholar
  340. Velthuys BR (1979) Electron flow through plastoquinone and cytochrome b 6 and f in chloroplasts. Proc Natl Acad Sci USA 76: 2765–2769PubMedCrossRefGoogle Scholar
  341. Vermeglio A (2002) The two-electron gate in photosynthetic bacteria. Photosynth Res 73: 83–86PubMedCrossRefGoogle Scholar
  342. Vernon LP (2003) Photosynthesis and the Charles F. Kettering research laboratory. Photosynth Res 76: 379–388PubMedCrossRefGoogle Scholar
  343. Vernon LP, Shaw ER, Ogawa T and Raveed D (1971) Structure of Photosystem I and Photosystem II of plant chloroplasts. Photochem Photobiol 14: 343–357Google Scholar
  344. Vinogradov AP and Teis RV (1941) Isotope composition of oxygen from different sources (oxygen from photosynthesis, air, CO2, H2O). Dokl Akad Nauk SSSR 33: 497–501Google Scholar
  345. Vinogradov AP and Teis RV (1947) Novel determination of the isotope composition of oxygen of photosynthesis. Dokl Akad Nauk SSSR 56: 57–58Google Scholar
  346. von Baeyer A (1864) Über die Wasserentziehung und ihre Bedeutung für das Pflanzenleben und die Gährung. Ber Deut Chem Ges 3: 63Google Scholar
  347. Vredenberg WJ (1982) In Memoriam: Professor Evert Christiaan Wassink (1905–1981). Am Soc Photobiol Newslett No. 56, April, 1982 (edited by Thomas P. Coohill)Google Scholar
  348. Vredenberg WJ, Amesz J and Duysens LNM (1965) Light-induced spectral shifts in bacteriochlorophyll and carotenoid absorption spectra. Biochem Biophys Res Commun 18: 435–439PubMedCrossRefGoogle Scholar
  349. Walker DA (1992) Energy, Plants and Man (2nd edition). Oxygraphics, Brighton, UK (See Figure 3.8 in this book.)Google Scholar
  350. Walker DA (2002a) ‘And whose bright presence’ — an appreciation of Robert Hill and his reaction. Photosynth Res 73: 51–54PubMedCrossRefGoogle Scholar
  351. Walker DA (2002b) The Z-scheme-down hill all the way. Trends Plant Sci 7: 183–185PubMedCrossRefGoogle Scholar
  352. Walker DA (2003) Chloroplasts in envelopes: CO2 fixation by fully functional intact chloroplasts. Photosynth Res 76: 319–327PubMedCrossRefGoogle Scholar
  353. Walker DA and Hill R (1967) The relation of oxygen evolution to carbon assimilation with isolated chloroplasts. Biochim Biophys Acta 131: 330–338PubMedCrossRefGoogle Scholar
  354. Walker JE (1994) The regulation of catalysis in ATP synthase. Curr Opin Struct Biol 4: 912–918PubMedCrossRefGoogle Scholar
  355. Warburg O and Negelein E (1922) Über den Energieumsatz bei der Kohlensäureassimilation. Zeit Physikal Chem 102: 235–266; Naturwissenschaften 10: 647–653Google Scholar
  356. Warburg O and Uyesugi T (1924) Über die Blackmansche Reaktion. Biochem Z 146: 486–492Google Scholar
  357. Wasielewski MR, Johnson DG, Seibert M and Govindjee (1989) Determination of the primary charge separation rate in isolated Photosystem II reaction centers with 500 femtosecond time resolution. Proc Natl Acad Sci USA 86: 542–548CrossRefGoogle Scholar
  358. Wassink EC and Kersten JAH (1945) Photosynthesis and fluorescence of the chlorophylls of diatoms. Enzymologia 11: 282–312Google Scholar
  359. Weissbach A, Smyrniotis PZ and Horecker BL (1954) Pentose phosphate and CO2 fixation with spinach extracts. J Am Chem Soc 76: 3611–3612CrossRefGoogle Scholar
  360. Weissbach A, Horecker BL and Hurwitz J (1956) The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J Biol Chem 218: 795–810PubMedGoogle Scholar
  361. Whitmarsh J and Govindjee (1999) The photosynthetic process. In: Singhal GS, Renger G, Sopory SK, Irrgang K-D and Govindjee (eds), Concepts in Photobiology. Photosynthesis and Photomorphogenesis, pp 11–51. Narosa Publishing House, New Delhi, India/Kluwer Academic Publishers, Dordrecht, The Netherlands (also available at Scholar
  362. Wild A and Ball R (1997) Photosynthetic Unit and Photosystems. History of Research and Current View (Relationship of Structure and Function), pp 219. Backhuys Publishers, Leiden, The NetherlandsGoogle Scholar
  363. Wildman SG (1998) Discovery of Rubisco. In: Kung SD and Yang SF (eds) Discoveries in Plant Biology. Chapter 12, pp 163–173. World Scientific Publishing, SingaporeGoogle Scholar
  364. Wildman SG (2002) Along the trail from Fraction 1 protein to Rubisco (ribulose bisphosphate carboxylase-oxygenase). Photosynth Res 73: 243–250PubMedCrossRefGoogle Scholar
  365. Wildman SG, Hirsch AM, Kirchanski SJ and Spencer D (2004) Chloroplasts in living cells and the string-of-grana concept of chloroplast structure revisited. Photosynth Res 80: 345–352PubMedCrossRefGoogle Scholar
  366. Willstätter R (1915) Chlorophyll. J Am Chem Soc 37: 323–345Google Scholar
  367. Willstätter R and Stoll A (1913) Untersuchungen über Chlorophyll. Justus Springer, Berlin (English translation by Schertz FM and Merz AR, Science Printing Press, Lancaster, Pennsylvania, 1928)Google Scholar
  368. Witt HT (1971) Coupling of quanta, electrons, field, ions, and phosphorylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Quart Rev Biophys 4: 365–477CrossRefGoogle Scholar
  369. Witt HT (2004) Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water-oxidizing photosynthesis. Photosynth Res 80: 85–107CrossRefGoogle Scholar
  370. Witt HT, Müller A and Rumberg B (1961a) Experimental evidence for the mechanism of photosynthesis. Nature 191: 194–195PubMedCrossRefGoogle Scholar
  371. Witt HT, Müller A and Rumberg B (1961b) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192: 967–969PubMedCrossRefGoogle Scholar
  372. Witt I, Witt HT, Gerken S, Saenger W, Decker J and Rogner N (1987) Crystallization of reaction center I of photosynthesis. FEBS Lett 221: 260–264CrossRefGoogle Scholar
  373. Wurmser R (1921) Recherches sur l’assimilation chlorophyllienne. Thèse de doctorat, Paris, FranceGoogle Scholar
  374. Wurmser R (1930) Oxydations et reductions. Presses Universitaires de France, Paris, FranceGoogle Scholar
  375. Wydrzynski TJ (2004) Early indications for manganese oxidation state changes during photosynthetic oxygen production: a personal account. Photosynth Res 80: 125–135PubMedCrossRefGoogle Scholar
  376. Wydrzynski T, Zumbulyadis N, Schmidt PG and Govindjee (1975) Water proton relaxation as a monitor of membrane-bound manganese in spinach chloroplasts. Biochim Biophys Acta 408: 349–354PubMedCrossRefGoogle Scholar
  377. Wydrzynski T, Zumbulyadis N, Schmidt PG, Gutowsky HS and Govindjee (1976) Proton relaxation and charge accumulation during oxygen evolution in photosynthesis. Proc Natl Acad Sci USA 73: 1196–1198PubMedCrossRefGoogle Scholar
  378. Yachandra VK, Sauer K and Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96: 2927–2950PubMedCrossRefGoogle Scholar
  379. Yakushiji E (1935) Über das Vorkommen des Cytochroms in höheren Pflanzen und in Algen. Acta Phytochim (Tokyo) 8: 325Google Scholar
  380. Zhang H, Carrell CJ, Huang H, Sled V, Onishi T, Smith JL and Cramer WA (1996) Characterization and crystallization of the lumen side domain of the chloroplast Rieske iron sulfur protein. J Biol Chem 271: 31360–31366PubMedCrossRefGoogle Scholar
  381. Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743PubMedCrossRefGoogle Scholar
  382. Zurawski G, Bohnert HJ, Whitfield PR and Bottomley W (1982) Nucleotide sequence of the gene for the Mr32,000 thylakoid membrane protein from Spinacea oleracea and Nicotiana debnevi predicts a totally conserved translational product of Mr38,950. Proc Natl Acad Sci USA 79: 7699–7703PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Govindjee 
    • 1
  • David Krogmann
    • 2
  1. 1.Departments of Biochemistry and Plant Biology, and the Center of Biophysics and Computational BiologyUniversity of IllinoisUrbanaUSA
  2. 2.Department of BiochemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations