Contributions of Henrik Lundegårdh

  • Anthony William Derek Larkum
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 20)


Henrik Lundegårdh made major contributions in the field of ecology and plant physiology from 1912 to 1969. His early work at Hallands Väderö in the Kattegat pioneered quantitative approaches to plant ecology and laid the understanding of carbon dioxide exchange in natural communities which is still useful today in global carbon accounting. Very early on in this work he invented the flame photometer. In trying to understand salt respiration of plants, he started to formulate hypotheses for the relationship between respiration and ion movement, including protons, hypotheses that were forerunners to the Chemiosmotic Hypothesis of Peter Mitchell. Necessarily, this involved work on plant cytochromes. He invented several early recording spectrophotometers and made many early discoveries in the field of plant cytochromes, including the photo-oxidation of cytochrome f in photosynthesis.

Key words

Hans Burström carbon accounting carbon cycle chemiosmosis cytochromes flame photometer Robin Hill David Keilin Georg Klebs Peter Mitchell salt respiration Wilhelm Pfeffer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Briggs GE, Hope AB and Robertson RN (1961) Electrolytes and Plant Cells. Blackwell Science Publishers, OxfordGoogle Scholar
  2. Davenport HE and Hill R (1952) The preparation and some properties of cytochrome f. Proc R Soc London Ser B 139: 327–345Google Scholar
  3. Duysens LNM (1954) Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science 121: 210–211Google Scholar
  4. Hill R and Bendall F (1960) Function of the two cytochrome components of chloroplast: a working hypothesis. Nature 186: 136–137CrossRefGoogle Scholar
  5. Hill R and Scarisbrick R (1951) The haematin compounds of leaves. New Phytol 50: 98–111CrossRefGoogle Scholar
  6. James WO and Lundegårdh H (1959) The cytochrome system of young barley roots. Proc R Soc London Ser B 150: 7–12CrossRefGoogle Scholar
  7. Kok B and Jagendorf AT (1963) Photosynthetic Mechanisms of Green Plants, Publication 1145. National Academy Sciences, Washington, DCGoogle Scholar
  8. Lundegårdh H (1924) Der Kreislauf der Kohlensäure in der Natur. Gustav Fischer, JenaGoogle Scholar
  9. Lundegårdh H (1927) Carbon dioxide evolution of soil and crop growth. Soil Sci 23: 417–453CrossRefGoogle Scholar
  10. Lundegårdh H (1929) Die quantitative Spektralanalyse der Elemente. I. Fischer, JenaGoogle Scholar
  11. Lundegårdh H (1932) Die Nährstoffaufnahme der Pflanze. Gustav Fischer, JenaGoogle Scholar
  12. Lundegårdh H (1934) Die quantitative Spektralanalyse der Elemente. II. Gustav Fischer, JenaGoogle Scholar
  13. Lundegårdh H (1937) Untersuchungen über die Anionatmung. Biochem Z 290: 104–115Google Scholar
  14. Lundegardh H (1939) An electrochemical theory of salt absorption and respiration. Nature (London) 143: 203–204Google Scholar
  15. Lundegardh H (1940) Investigation as to the absorption and accumulation of inorganic ions. Lantbrukhögskolan Ann 8: 234–404Google Scholar
  16. Lundegårdh H (1942) The growth of roots as influenced by pH and salt content of the medium. Lantbrukhögskolan Ann 10: 31–94Google Scholar
  17. Lundegardh H (1945) Absorption transport and exudation of inorganic ions by plant roots. Arch Bot 32A: 1–139Google Scholar
  18. Lundegårdh H (1951) Leaf Analysis (translated by Mitchell RL). Hilger & Watts, LondonGoogle Scholar
  19. Lundegårdh H (1954a) Anion respiration: the experimental basis of a theory of absorption, transport and exudation of electrolytes by living cells and tissues. Symposia of Society for Experimental Biology, Vol VIII: Active Transport and Secretion, pp 262–296. Cambridge University Press, Cambridge, UKGoogle Scholar
  20. Lundegårdh H (1954b) On the oxidation of cytochrome f by light. Physiol Plant 7: 375–382CrossRefGoogle Scholar
  21. Lundegårdh H (1957) Klima und Boden in Ihrer Wirkung auf das Pflanzenleben, 5th ed. Gustav Fischer, JenaGoogle Scholar
  22. Lundegårdh H (1960) An electrochemical theory of salt absorption and respiration. Nature 185: 70–74PubMedCrossRefGoogle Scholar
  23. Lundegårdh H (1961) Response of chloroplast cytochromes to light and substrates. Nature 192: 243–248PubMedCrossRefGoogle Scholar
  24. Lundegårdh H (1964) The cytochromes of chloroplasts. Proc Natl Acad Sci USA 52: 1587–1590PubMedCrossRefGoogle Scholar
  25. Lundegårdh H (1966) The role of carotenoids in the photosynthesis of green plants. Proc Natl Acad Sci USA 55: 1062–1065PubMedCrossRefGoogle Scholar
  26. Lundegårdh H (1969) Relative quantum efficiency of photosynthetic oxygen production in chloroplasts of spinach. Nature 221: 280–281CrossRefGoogle Scholar
  27. Lundegårdh H and Burström H (1933) Untersuchungen über die Salzaufnahme der Pflanzen. III Quantitative Beziehungung zwischen Salzaufnahme der Pflanzen. Biochem Z 261: 235–247Google Scholar
  28. Lundegårdh H and Larkum AWD (1965) The action of ionizing radiation on the respiratory mechanism of baker’s yeast. Biochim Biophys Acta 97: 422–433Google Scholar
  29. Lundegårdh H, Burström H and Rennerfelt E (1932a) Untersuchungen über die Salzaufnahme der Pflanzen. I. Svensk Bot Tidskr 26: 10–23Google Scholar
  30. Lundegårdh H, Burström H and Rennerfelt E (1932b) Untersuchungen über die Salzaufnahme der Pflanzen. II. Svensk Bot Tidskr 26: 271–293Google Scholar
  31. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191: 144–148PubMedCrossRefGoogle Scholar
  32. Mitchell P (1978) David Keilin’s respiratory chain concept and its chemiosmotic consequences. Nobel Lectures, Chemistry, 1971–1980. Royal Swedish Academy of Science, Stockholm ( Scholar
  33. Peng CH, Guiot J and Van Campo E (1998) Past and future carbon balance of European ecosystems from pollen data and climatic models simulations. Global Planet Change 18: 189–200CrossRefGoogle Scholar
  34. Rabinowitch EI (1951) Photosynthesis and Related Processes. Vol II, Part 1. Interscience Publishers, New YorkGoogle Scholar
  35. Rabinowitch EI (1956) Photosynthesis and Related Processes. Vol II, Part 2. Interscience Publishers, New YorkGoogle Scholar
  36. Robertson RN and Wilkins MJ (1948) Studies in the metabolism of plant cells. VII. The quantitative relation between the salt accumulation and salt respiration. Aust J Biol Sci B1: 17–37Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Anthony William Derek Larkum
    • 1
  1. 1.School of Biological SciencesUniversity of SydneyAustralia

Personalised recommendations