First-Principles Study of InAs/GaAs(001) Heteroepitaxy

  • Evgeni Penev
  • Peter Kratzer
Part of the NATO Science Series book series (NAII, volume 190)


Density-functional theory calculations are employed to obtain important information about the morphology of III–V semiconductor surfaces and kinetics of epitaxial growth. In this way, insight into the microscopic processes governing quantum dot formation in InAs/GaAs(001) heteroepitaxy is gained. First, we investigate theoretically the atomic structure and thermodynamics of the wetting layer formed by InAs deposition on GaAs(001), including the effect of strain in our discussion. Secondly, we present results about In adatom diffusion both on the wetting layer and on the c(4 × 4)-reconstructed GaAs(001) surface. In the latter case, we demonstrate the importance of mechanical stress for the height of surface diffusion barriers. Implications for the growth of InAs quantum dots on GaAs(001) are discussed.


Molecular Beam Epitaxy Scanning Tunnelling Microscopy Epitaxial Growth Kinetic Monte Carlo Simulation Surface Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Bimberg, M. Grundmann, and N. N. Ledentsov. Quantum dot heterostructures (Wiley, 1998).Google Scholar
  2. [2]
    M. Kotrla, N. Papanicolaou, D. D. Vvedensky, and L. T. Wille, editors. Atomistic Aspects of Epitaxial Growth (Kluwer, Dordrecht, 2002).Google Scholar
  3. [3]
    I. N. Stranski and L. Krastanov. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Sitzungsber. Akad. Wiss. Wien, Math.-naturwiss. Kl. IIb 146, 797–810, 1938.Google Scholar
  4. [4]
    M. Sugawara, editor. Self-assembled InGaAs/GaAs quantum dots (Academic, New York, 1999).Google Scholar
  5. [5]
    B. A. Joyce and D. D. Vvedensky. Mechanisms and anomalies in the formation of InAs-GaAs(001) quantum dot structures, in Atomistic Aspects of Epitaxial Growth, edited by M. Kotrla and N. Papanicolaou and D. Vvedensky and L. Wille (Kluwer, Dordrecht, 2002), pp. 301–325.Google Scholar
  6. [6]
    T. R. Ramachandran, R. Heitz, P. Chen, and A. Madhukar. Mass transfer in Stranski-Krastanov growth of InAs on GaAs. Applied Physics Letters 70: 640–642, 1997.CrossRefGoogle Scholar
  7. [7]
    P. Ruggerone, C. Ratsch, and M. Scheffler. Density-functional theory of epitaxial growth of metals, in Growth and Properties of Ultrathin Epitaxial Layers, edited by D. A. King and D. P. Woodruff (Elsevier, Amsterdam, 1997) pp. 490–544.Google Scholar
  8. [8]
    P. Kratzer, C. Morgan, and M. Scheffler. Density-functional theory studies on microscopic processes of GaAs growth. Prog. Surf. Sci. 59: 135–147, 1998.CrossRefGoogle Scholar
  9. [9]
    For a large number of examples the reader is referred to the following URL: Scholar
  10. [10]
    A. Kley. Theoretische Untersuchungen zur Adatomdiffusion auf niederindizierten Oberflächen von GaAs (Wissenschaft & Technik Verlag, Berlin, 1997).Google Scholar
  11. [11]
    C. G. Van de Walle and J. Neugebauer. First-principles surface phase diagram for hydrogen on GaN surfaces. Phys. Rev. Lett. 88: art. no. 066103, 2002.Google Scholar
  12. [12]
    A. A. Stekolnikov, J. Furthmüller, and F. Bechstedt. Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction. Phys. Rev. B 65: art. no. 115318, 2002.Google Scholar
  13. [13]
    K. Reuter and M. Scheffler. First-principles thermodynamics for oxidation catalysis: Surface phase diagrams and catalytically interesting regions. Phys. Rev. Lett. 90: art. no. 046103, 2003.Google Scholar
  14. [14]
    F. Bechstedt. Principles of Surface Physics (Springer, Berlin, 2003).Google Scholar
  15. [15]
    P. Kratzer, E. Penev, and M. Scheffler. Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations. Appl. Surf. Sci. 216: 436–446, 2003.CrossRefGoogle Scholar
  16. [16]
    R. J. Needs, R. M. Martin, and O. H. Nielsen. Total-energy calculations of the structural properties of the group-V element arsenic. Phys. Rev. B 33: 3778–3784 (1986).CrossRefGoogle Scholar
  17. [17]
    M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler. Density-functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun. 107: 187–222, 1997; URL: Scholar
  18. [18]
    K. Shiraishi. A new slab model approach for electronic-structure calculation of polar semiconductor surface. J. Phys. Soc. Jpn. 59: 3455–3458, 1996.Google Scholar
  19. [19]
    V. P. LaBella, H. Yang, D. W. Bullock, P. M. Thibado, P. Kratzer, and M. Scheffler. Atomic structure of the GaAs(001)-(2 × 4) surface resolved using scanning tunneling microscopy and first-principles theory. Phys. Rev. Lett. 83: 2989–2992, 1999.CrossRefGoogle Scholar
  20. [20]
    E. S. Penev. On the theory of surface diffusion in InAs/GaAs(001) heteroepitaxy (Technische Universität Berlin, 2002); URL: Scholar
  21. [21]
    J. Tersoff, M. D. Johnson, and B. G. Orr. Adatom densities on GaAs: Evidence for a near-equilibrium growth. Phys. Rev. Lett. 78: 282–285, 1997.CrossRefGoogle Scholar
  22. [22]
    P. Kratzer, C. G. Morgan, and M. Scheffler. Model for nucleation in GaAs homoepitaxy derived from first principles. Phys. Rev. B 59: 15246–15252, 1999.CrossRefGoogle Scholar
  23. [23]
    C. T. Foxon and B. A. Joyce. Interaction kinetics of As2 and Ga on {100} GaAs surface. Surf. Sci. 64: 292–304, 1977.CrossRefGoogle Scholar
  24. [24]
    M. Scheffler and P. Kratzer. Ab initio thermodynamics and statistical mechanics of diffusion, growth, and self-assembly of quantum dots, in Atomistic Aspects of Epitaxial Growth, edited by M. Kotrla and N. Papanicolaou and D. D. Vvedensky and L. T. Wille (Kluwer, Dordrecht, 2002) pp. 355–369.Google Scholar
  25. [25]
    S.-H. Lee, W. Moritz, and M. Scheffler. GaAs(001) surface under conditions of low As pressure: Evidence for a novel surface geometry. Phys. Rev. Lett. 85, 3890–3893, 2000.CrossRefPubMedGoogle Scholar
  26. [26]
    C. Ratsch, W. Barvosa-Carter, F. Grosse, J. H. G. Owen, and J. J. Zinck. Surface reconstructions for InAs(001) studied with density-functional theory and STM. Phys. Rev. B 62: R7719–R7722, 2000.CrossRefGoogle Scholar
  27. [27]
    W. G. Schmidt, S. Mirbt, and F. Bechstedt. Surface phase diagram of (2 × 4) and (4 × 2) reconstructions of GaAs(001). Phys. Rev. B 62: 8087–8091, 2000.CrossRefGoogle Scholar
  28. [28]
    W. G. Schmidt. III–V compound semiconductor (001) surfaces. Appl. Phys. A 75: 89–99, 2002.CrossRefGoogle Scholar
  29. [29]
    E. Penev, P. Kratzer, and M. Scheffler. (unpublished)Google Scholar
  30. [30]
    C. Ratsch. Strain-induced change of surface reconstructions for InAs(001). Phys. Rev. B 63: art. no. 161306(R), 2001.Google Scholar
  31. [31]
    A. Ohtake, J. Nakamura, S. Tsukamoto, N. Koguchi, and A. Natori. New structure model for the GaAs(001)-c(4 × 4) surface. Phys. Rev. Lett. 89: art. no. 206102, 2002.Google Scholar
  32. [32]
    W. Haiss. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64: 591–648, 2001.CrossRefGoogle Scholar
  33. [33]
    D. I. Westwood, Z. Sobiesierski, E. Steimetz, T. Zettler, and W. Richter. On the development of InAs on GaAs(001) as measured by reflectance anisotropy spectroscopy: Continuous and islanded films. Appl. Surf. Sci. 123/124: 347–351, 1998.CrossRefGoogle Scholar
  34. [34]
    T. Kita, O. Wada, T. Nakayama, and M. Murayama. Optical reflectance study of the wetting layer in (In, Ga)As self-assembled dot growth on GaAs(001). Phys. Rev. B 66: art. no. 195312, 2002.Google Scholar
  35. [35]
    J. G. Belk, C. F. McConville, J. L. Sudijono, T. S. Jones, and B. A. Joyce. Surface alloying at InAs-GaAs interfaces grown on (001) surfaces by molecular beam epitaxy. Surf. Sci. 387: 213–226, 1997.CrossRefGoogle Scholar
  36. [36]
    Y. Garreau, K. Aïd, M. Sauvage-Simkin, R. Pinchaux, C. F. McConville, T. S. Jones, J. L. Sudijono, and E. S. Tok. Stoichiometry and discommensuration on InxGa1–xAs/GaAs(001) reconstructed surfaces: A quantitative x-ray diffuse-scattering study. Phys. Rev. B 58: 16177–16185, 1998.CrossRefGoogle Scholar
  37. [37]
    A. G. de Oliveira, S. D. Parker, R. Droopad, and B. A. Joyce. A generalized model for the reconstruction of {001} surfaces of III–V compound semiconductors based on a RHEED study of InSb(001). Surf. Sci. 227: 150–156, 1990.CrossRefGoogle Scholar
  38. [38]
    M. Sauvage-Simkin, Y. Garreau, R. Pinchaux, M. B. Véron, J. P. Landesman, and J. Nagle. Commensurate and incommensurate phases at reconstructed (In,Ga)As(001) surfaces: X-ray diffraction evidence for a composition lock-in. Phys. Rev. Lett. 75: 3485–3488, 1995.CrossRefPubMedGoogle Scholar
  39. [39]
    J. G. Belk, J. L. Sudijono, D. M. Holmes, C. F. McConville, T. S. Jones, and B. A. Joyce. Spatial distribution of In during the initial stages of growth of InAs on GaAs(001)-c(4 × 4). Surf. Sci. 365: 735–742, 1996.Google Scholar
  40. [40]
    B. A. Joyce, D. D. Vvedensky, G. R. Bell, J. G. Belk, M. Itoh, and T. S. Jones. Nucleation and growth mechanism during MBE of III–V compounds. Mater. Sci. Eng. B 67: 7–16, 1999.CrossRefGoogle Scholar
  41. [41]
    D. J. Fisher. The Meyer-Neldel Rule. (Trans Tech Publications, Uetikon-Zürich, 2001).Google Scholar
  42. [42]
    E. Penev, P. Kratzer, and M. Scheffler. Effect of strain on surface diffusion in semiconductor heteroepitaxy. Phys. Rev. B 64: art. no. 085401, 2001.Google Scholar
  43. [43]
    H. T. Dobbs, D. D. Vvedensky, A. Zangwill, J. Johansson, N. Carlsson, W. Seifert. Mean-field theory of quantum dot formation. Phys. Rev. Lett. 79: 897–900, 1997.CrossRefGoogle Scholar
  44. [44]
    H. T. Dobbs, A. Zangwill, and D. D. Vvedensky. Nucleation and growth of coherent quantum dots: a mean field theory, in Surface Diffusion: Atomistic and Collective Processes, edited by M. Tringides (Plenum, New York, 1998) pp. 263–275.Google Scholar
  45. [45]
    J. Tersoff and R. M. Tromp. Shape transition in growth of strained islands: Spontaneous formation of quantum wires. Phys. Rev. Lett. 70: 2782–2785, 1993.CrossRefPubMedGoogle Scholar
  46. [46]
    P. Kratzer, E. Penev, and M. Scheffler. First-principles studies of kinetics in epitaxial growth of III–V semiconductors. Appl. Phys. A 75: 79–88, 2002.CrossRefGoogle Scholar
  47. [47]
    A. Madhukar. A unified atomistic and kinetic framework for growth front morphology evolution and defect initiation in strained epitaxy. J. Cryst. Growth 163: 149–164, 1996.CrossRefGoogle Scholar
  48. [48]
    H. M. Koduvely and A. Zangwill. Epitaxial growth kinetics with interacting coherent islands. Phys. Rev. B 60: R2204–R2207, 1999.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Evgeni Penev
    • 1
  • Peter Kratzer
    • 1
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin-DahlemGermany

Personalised recommendations