Advertisement

Complexation of Radionuclides with Humic Substances

  • V. Moulin
Part of the NATO Science Series book series (NAIV, volume 52)

Abstract

Humic substances are ubiquitous compounds presenting specific properties with respect to complexation, sorption and transport. Because they may enhance metal solubilities due to their strong complexing properties, as well as increase or decrease metal retention on mineral surfaces due to their affinity for mineral substrates and their scavenging properties, humic substances may impact metal speciation in the environment, and in particular radionuclides speciation. Various examples based on actinides, lanthanides or iodine will be presented to illustrate the complexation properties as well as speciation calculations with emphasis on the thermodynamic constants used and the techniques used to obtain them.

Keywords

Humic Substance Humic Acid Fulvic Acid Interaction Constant Trivalent Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. 1.
    Tessier, A., Turner, D.R. (1995) Metal Speciation and Bioavailability in Aquatic systems, John Wiley and Sons, Chichester.Google Scholar
  2. 2.
    Contamination des Sols par les éléments en traces: les risques et leur gestion. Rapport N°42 (Août 1998). Académie des Sciences (Lavoisier TECDOC).Google Scholar
  3. 3.
    Templeton, D.M., Freek, A., Comelis, R., Danielsson, L., Muntau, H., van Leeuwen, H., and Lobinski, R. (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects and methodological approaches, Pure Appl. Chem. 72, 1453–1470.Google Scholar
  4. 4.
    Plancque, G., Amekraz, B., Moulin, V., Toulhoat, P., and Moulin, C. (2001) Molecular structure of fulvic acids by electrospray with quadrupole/time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry 15(10), 827–835.CrossRefGoogle Scholar
  5. 5.
    Moulin, V., Amekraz, B., Barre, N., Plancque, G., Mercier, F., Reiller, P., and Moulin, C. (in press) The role of humic substances on trace element mobility in natural environments and applications for radionuclides, in E. A. Ghabbour and G. Davies (eds.), Humic Substances: Nature's Most Versatile Materials, Taylor and Francis, Inc. New York.Google Scholar
  6. 6.
    Conte, P., and Piccolo, A. (1999) Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules, Environ. Sci. Techn. 33, 1682–1690.CrossRefGoogle Scholar
  7. 7.
    Moulin, V., and Moulin, C. (2001) Radionuclide speciation in the environment: a review, Radiochim. Acta, 89, 773–778.Google Scholar
  8. 8.
    Moulin, V., and Moulin, C. (1995) Fate of actinides in the presence of humic substances under conditions relevant to nuclear waste disposal, Applied Geochem. 10, 573–580.CrossRefGoogle Scholar
  9. 9.
    Buckau, G. (ed.) (2000) Effects of Humic Substances on the Migration of Radionuclides: Complexation and Transport of Actinides, EUR Report 19610 EN.Google Scholar
  10. 10.
    Reiller, P., Moulin, V., and Giffaut, E. (in press) On the influence of humic substances upon radionuclide speciation. A sensitivity study. Applied Geochem.Google Scholar
  11. 11.
    Hummel, W., Glaus, M.A., and van Loon, L.R. (2000) Trace metal-humate interactions. II. The conservative roof model and its application, Applied Geochem. 15, 975–1001.CrossRefGoogle Scholar
  12. 12.
    Kim, J.I., and Czerwinski, K. (1996) Complexation of metal ions with humic acid: metal ion neutralization model, Radiochim. Acta 73, 5–10.Google Scholar
  13. 13.
    Choppin, G.R. and Allard, B. (1985) Complexes of actinides with naturally occurring organic compounds, in A.J. Freeman and C. Keller (eds.), Handbook on the Physics and Chemistry of the Actinides, Chapter 11, Elsevier, Amsterdam.Google Scholar
  14. 14.
    Choppin, G.R. and Labonne-Wall, N. (1997) Comparison of two models for metal-humic interactions, J. Radioanal. Nucl. Chem. 221, 67–71.CrossRefGoogle Scholar
  15. 15.
    Kinniburgh, D.G., van Riemsdijk, W.H., Koopal, L.K., Borkovec, M., Benedetti, M.F. and Avena, M.J. (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency, Colloids Surf. A 151, 147–166.CrossRefGoogle Scholar
  16. 16.
    Tipping, E., and Hurley, M. A. (1992) A unifying model of cation binding by humic substances, Geochim. Cosmochim. Acta 56, 3627–3641.CrossRefGoogle Scholar
  17. 17.
    Moulin, V., Tits, J. and Ouzounian, G. (1992) Actinide speciation in the presence of humic substances in natural water conditions, Radiochim. Acta 58/59, 179–190.Google Scholar
  18. 18.
    Buffle, J. (1988) Complexation Reactions in Aquatic Systems, Wiley & Son, New-York.Google Scholar
  19. 19.
    OECD Proceedings of the Workshop on Evaluation of Speciation Technology held in Japan/October 1999. Code 662001041P1 OECD May 2001.Google Scholar
  20. 20.
    Moulin, V., Moulin, C. and Dran, J.C. (1996) Role of humic substances and colloids on the behaviour of radiotoxic elements in relation with nuclear waste disposals: confinement or enhancement of migration? In J.S. Gaffiey, N.A. Marley and S.B. Clark (eds.), ACS Symposium Series 651 on Humic and Fulvic Acids and Organic Colloidal Materials in the Environment, Chapter 16, ACS, Washington, pp. 259–271.Google Scholar
  21. 21.
    Plancque, G., Moulin, C., Moulin, V. and Toulhoat, P. (2000) Complexation of Eu (III) by humic substances: Eu speciation determined by time-resolved laser-induced fluorescence, In G. Buckau (ed.) Third Technical Progress Report FZKA 6524 Report, October, Research Center Karlsruhe.Google Scholar
  22. 22.
    Moulin, V., Reiller, P., Dautel, C., Plancque, G., Laszak, I. and Moulin, C. (1999) Complexation of Eu(III), Th(IV) and U(VI) by humic substances. G. Buckau (ed.), Second Technical Progress Report FZKA 6324 Report, June, Research Center Karlsruhe.Google Scholar
  23. 23.
    Moulin, C. (2001) Speciation, from photon to ion detection. Experience in CEA, Speciation from photon to ion detection. In G.R. Choppin, J. Fuger, and Z. Yoshida (eds.), Proceedings of a Workshop on Evaluation of Speciation technology, (JAERI, Nov 99) code 662001041P1 OECD May.Google Scholar
  24. 24.
    Moulin, C., Mauchien, P. and Decambox, P. (1991) Analytical applications of Time-Resolved Laser-Induced Fluorescence in the nuclear fuel cycle, Journal de Physique 1, Sup. 3, C7, 677–680.Google Scholar
  25. 25.
    Moulin, C., Decambox, P. and Mauchien, P. (1997) State of the art in TRLIF for actinides analysis: applications and trends, J. Radioanalyt. Nucl. 226, 135.CrossRefGoogle Scholar
  26. 26.
    Laszak, I. (1997) Etude des interactions entire collondes naturels et é1éments radiotoxiques par Spectrofluorimйtrie Laser a Rйsolution Temporelle. Etude Spectroscopique et chimique. Thèse de l'Universitй Pierre et Marie Curie-Paris VI, France.Google Scholar
  27. 27.
    Plancque, G. (2001) Etude des interactions entire collondes organiques et polluants inorganiques: structure et réactivitй des substances humiques. Thèse de l'Universitй d'Evry, France.Google Scholar
  28. 28.
    Plancque, G., Moulin, V., Toulhoat, P. and Moulin, C. (2003) Europium speciation by time-resolved laser induced fluorescence, Anal. Chim. Acta 478, 11–22.CrossRefGoogle Scholar
  29. 29.
    Moulin, C., Wei, J., Van Iseghem, P., Laszak, I., Plancque, G. and Moulin, V. (1999) Europium complexes investigations in natural waters by time-resolved laser-induced fluorescence, Anal. Chim. Acta, 396, 253–261.CrossRefGoogle Scholar
  30. 30.
    Moulin, C., Laszak, I., Moulin, V. and Tondre, C. (1998) Time-resolved laser-induced fluorescence as a unique tool for low-level uranium speciation, Appl. Spectroscopy 52, 528.CrossRefGoogle Scholar
  31. 31.
    Moulin, C., Decambox, P., Moulin, V. and Decaillon, J.G. (1995) Uranium speciation in solution by time-resolved laser-induced fluorescence, Anal. Chem. 34, 348–353.CrossRefGoogle Scholar
  32. 32.
    Yamashita, M. and Fenn, J.B. (1984) Negative ion production with the electrospray ion source, J. Phys. Chem. 88, 4671–4675.CrossRefGoogle Scholar
  33. 33.
    Dole, M., Mack, L. L., Hines, R. L., Mobley, R. C., Ferguson, L. D. and Alice, M. B. (1968) Molecular beams of macroions, J. Chem. Phys. 49, 2240–2249.CrossRefGoogle Scholar
  34. 34.
    Thomson, B.A. and Iribame, J.V. (1979) Field-induced ion evaporation from liquid surfaces at atmospheric pressure, J. Chem. Phys. 71, 4451–4463.CrossRefGoogle Scholar
  35. 35.
    Wang, G. and Cole, R.B. (1997) Electrospray Ionization Mass Spectrometry, J. Wiley&Sons, New-York, 137–174.Google Scholar
  36. 36.
    Moulin, C., Charron, N., Plancque, G. and Virelizier, H. (2000) Speciation of uranium by ES-MS: comparison with TRLIF, Appl. Spectroscopy 54, 843.CrossRefGoogle Scholar
  37. 37.
    Moulin, C., Amekraz, B., Hubert, S. and Moulin, V. (2001) Speciation of thorium hydrolysis species by ES-MS, Anal. Chim. Acta 441, 269–279.CrossRefGoogle Scholar
  38. 38.
    Lamourox, C., Moulin, C., Tabet, J.C. and Jankowski, C. (2000) Charactrization of Zr complexes of interest in spent nuclear fuel repocessing by ESI-MS, Rapid. Comm. Mass pectrom. 14,1869.CrossRefGoogle Scholar
  39. 39.
    Glaus, M.A., Hummel, W. and van Loon, L. (2000) Trace metal-humate interactions. I. Experimental determination of conditional stability constants, Appl. Geochem. 15, 953–973.CrossRefGoogle Scholar
  40. 40.
    Choppin, G.R. (1992) The role of natural organic in radionuclide migration in natural aquifer systems, Radiochim. Acta 58/59, 113–120.Google Scholar
  41. 41.
    Bidoglio, G., Grenthe, I., Robouch, P. and Omenetto, N. (1991) Complexation of Eu and Tb with humic substances by time-resolved laser-induced fluorescence, Talanta 9, 999–1003.CrossRefGoogle Scholar
  42. 42.
    Shin, H.S. and Choppin, G.R. (1999) A Study of Eu(III)-humate complexation using Eu(III) luminescence spectroscopy, Radiochim. Acta 86, 167–174.Google Scholar
  43. 43.
    Hummel, W., Glaus, M.A. and van Loon, L. R. (1999) Complexation of radionuclides with humic substances: the metal concentration effect, Radiochim. Acta 84, 111–114.Google Scholar
  44. 44.
    Panak, P., Klenze, R. and Kim, J.I. (1996) A study of ternary complexes of Cm(III) with humic acid and hydroxide or carbonate in neutral pH range by time-resolved laser-induced fluorescence spectroscopy, Radiochim. Acta 74, 141–146.Google Scholar
  45. 45.
    Diercks, A. (1995) Complexation of europium with humic acids — Influence of cations and competing ligands, Ph-D, Leuven University, Belgium.Google Scholar
  46. 46.
    Reiller, P., Moulin, V., Dautel, C. and Casanova, F. (2000) Complexation of Th(IV) by humic substances G. Buckau (ed.), Third Technical Progress Report FZKA 6524, October, Research Center Karlsruhe.Google Scholar
  47. 47.
    Reiller, P., Moulin, V., Casanova, F. and Dautel, C. (in press) On the study of Th(WV)-humic acids interactions by competition towards sorption onto silica and determination of global interaction constants, Radiochim. Acta.Google Scholar
  48. 48.
    Moulin, V., Tits, J., Laszak, I., Moulin, C., Decambox, P. and de Ruty, O. (1995) Complexation behaviour of actinides with humic substances studied by time-resolved laser-induced fluorescence and spectrophotometry, in J.I. Kim and G. Buckau (eds.), Effects of Humic Substances on the Migration of Radionuclides: Complexation of Actinides with Humic Substances, RCM 01394 (Sixth Progress Report CEC-Contract FI2W-CT91-0083), March, Institut für Radiochemie, Technische Univ. München.Google Scholar
  49. 49.
    Choppin, G.R. and Morgenstern, A. (2001) Distribution and movement of environnemental plutonium, in A. Kudo (ed.), Plutonium in the Environment, Elsevier ScienceLtd, Oxford.Google Scholar
  50. 50.
    Andre, C. and Choppin, G.R. (2000) Reduction of Pu(V) by humic acid, Radiochim. Acta 88, 613–616.Google Scholar
  51. 51.
    Garcia, K., Boust, D., Moulin, V. Douville, E., Fourest, B. and Guillaumont R. (1996) Multiparametric investigation of the reactions of plutonium under estuarine conditions, Radiochim. Acta, 74, 165–170.Google Scholar
  52. 52.
    Labonne-Wall, N., Moulin, V. and Vilarem, J.P. (1997) Retention properties of humic substances onto amorphous silica: consequences for the sorption of cations, Radiochim. Acta 79, 37–49.Google Scholar
  53. 53.
    Mercier, F., Moulin, V., Barré, N., Trocellier, P. and Toulhoat, P.(2001) Study of a ternary system silica/humic acids/iodine: capabilities of the nuclear microprobe, Nuclear Instr. Methods B181, 628–633.CrossRefGoogle Scholar
  54. 54.
    Reiller, P., Moulin, V., Casanova, F. and Dautel, C. (2002) Retention behaviour of humic substances onto mineral surfaces and consequences upon Th(IV) mobility: case of iron oxides, Appl. Geochem. 17, 1551–1562.CrossRefGoogle Scholar
  55. 55.
    Mercier, F., Moulin, V., Guittet, M.J, Barré, N., Toulhoat, N., Gautier-Soyer, M. and Toulhoat, P. (2000) Applications of different analytical techniques such as NAA, PIXE and XPS for the evidence and characterization of the humic substances/iodine associations, Radiochim. Acta 88, 779–785.Google Scholar
  56. 56.
    Mercier, F., Moulin, V., Guittet, MJ., Barré, N., Gautier-Soyer, M., Trocellier, P. and Toulhoat, P. (2002) Applications of new surface analysis techniques (NMA and XPS) to humic substances, Org. Geochem. 33, 247–255.CrossRefGoogle Scholar
  57. 57.
    Moulin, V., Reiller, P., Amekraz, B. and Moulin, C. (2001) Direct characterization of covalently bound iodine to fulvic acids by electrospray mass spectrometry, Rapid Comm. in Mass Spectrometry 15, 2488–2496.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • V. Moulin
    • 1
  1. 1.Nuclear Energy Division & UMR CEA-CNRS-UEVE, Laboratory of Analysis and EnvironmentCommissariat à 1'Energie Atomique, CEAGif-sur-YvetteFrance

Personalised recommendations