Advertisement

Development of Biotechnology for Commiphora wightii: A Potent Source of Natural Hypolipidemic and Hypocholesterolemic Drug

  • Sandeep Kumar
  • S.S Suri
  • K.C. Sonie
  • K.G. Ramawat

Abstract

Commiphora wightii has become an endangered species due to its overexploitation for its gum-resin. Guggulsterones present in gum-resin are potent lipid and cholesterol lowering natural agents. Drugs based on these are currently used clinically in India and Europe. The plant is endemic to Indian subcontinent, therefore major contributions on its biology, chemistry, pharmacology and biotechnology have been made by Indian scientists. Biotechnological approaches made for guggulsterone production by cell cultures and for its micropropagation are reviewed.

Keywords

High Performance Liquid Chromatographic Somatic Embryo Somatic Embryogenesis Resin Canal Immature Zygotic Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kumar, V. Shankar, Medicinal plants of the Indian desert: Commiphora wightii (Arnott.) Bhand. J. Arid Environ. 5 (1982) 1–11.Google Scholar
  2. 2.
    P. Gupta, K.R. Shivanna, H.Y. MohanRam, Apomixis and polyembryony in the guggul plant, Commiphora wightii. Ann. Bot. 78 (1996) 67–72.CrossRefGoogle Scholar
  3. 3.
    P. Gupta, K.R. Shivanna, H.Y. MohanRam, Pollen-pistil interaction in a non-pseudogamous apomict, Commiphora wightii. Ann. Bot. 81 (1998) 589–594.CrossRefGoogle Scholar
  4. 4.
    J. Prakash, P. Kasera, D.D. Chawan, A report on polyembryony in Commiphora wightii from Thar desert India. Curr. Sci. 78 (2000) 1185–87.Google Scholar
  5. 5.
    K.G. Ramawat, L. Bhardwaj, M.N. Tewari, Exploitation of India desert medicinal plants through tissue culture. Indian Rev. Life Sci., 11 (1991) 3–27.Google Scholar
  6. 6.
    Y.O. Assad, B. Torto, A. Hassanali, P.G.N. Njagi, N.H.H. Bashir, H. Mahamat, Seasonal variation in the essential oil composition of Commiphora quadricincta and its effect on the maturation of immature adults of the desert locust, Schistocera gregaria. Phytochem. 44 (1997) 833–841.CrossRefGoogle Scholar
  7. 7.
    S. Dev, A modern look at an age-old Ayurvedic drug-guggulu. Sci. Age, July 1978 (1987) 13–18.Google Scholar
  8. 8.
    S. Dev, Ancient-modern concordance in Ayurvedic plants: sum examples. Environ. Health Perspect. 107 (1999) 783–789.PubMedGoogle Scholar
  9. 9.
    V.D. Patil, U.R. Nayak, S. Dev, Chemistry of Ayurvedic crude drugs—I. Guggulu-1, Steroidal constituents. Tetrahedron., 28 (1972) 2341–2352.CrossRefGoogle Scholar
  10. 10.
    V.D. Patil, U.R. Nayak, S. Dev, Chemistry of Ayurvedic crude drugs—III. Guggulu-3, long chain aliphatic sterols, a new class of naturally occurring lipids. Tetrahedron. 29 (1973) 1595–1598.Google Scholar
  11. 11.
    K.K. Purushothaman, S. Chandrasekharan, Guggulsterols from Commiphora wightii (Burseraceae). Ind. J. Chem. Section B: Organic chemistry including medical chemistry, 14 (1976) 802–804.Google Scholar
  12. 12.
    R.S. Prasad, S. Dev, Chemistry of Ayurvedic crude drugs: Guggulu (resin from Commiphora wightii)-4, Absolute Steriochemistry of Mukulol. Tetrahedron. 32 (1976) 1437–1441.CrossRefGoogle Scholar
  13. 13.
    B. Mesrob, C. Nesbitt, R. Misra, R.C. Pandey, High-performance liquid chromatographic method of fingerprinting and quantitative determination of E-and Z-guggulsterones in Commiphora mukul resin and its products. J. Chromatogr. Biomed. Sci. Appl. 720 (1998) 189–196.CrossRefGoogle Scholar
  14. 14.
    S.K. Singh, N. Verma, R.C. Gupta, Sensitive high performance liquid chromatographic assay method for the determination of guggulsterone in serum. J. Chromatogr. Biomed. Appl. 670 (1995) 173–176.Google Scholar
  15. 15.
    N. Verma, S.K. Singh, R.C. Gupta, Simultaneous determination of the stereoisomers of guggulsterone in serum by high-performance liquid chromatography. J. Chromato. B708 (1998) 243–248.Google Scholar
  16. 16.
    M. Nagarajan, T.W. Waszkuc, J. Sun, Simultaneous determination of E-and Z-guggulsterones in diet supplements containing Commiphora mukul extract (guggulipid) by liquid chromatography. J. AOAC Int., 84 (2001) 24–28.PubMedGoogle Scholar
  17. 17.
    V.D. Patil, U.R. Nayak, S. Dev, Chemistry of Ayurvedic crude drugs—II: Guggul resin from Commiphora mukul—II: Diterpenoid constituents. Tetrahedron. 29 (2) (1974) 341–348.Google Scholar
  18. 18.
    H.K. Kakrani, Guggul: A review. Indian Drugs, 18 (1981a) 417–421.Google Scholar
  19. 19.
    H.K. Kakrani, Flavonoids from the flowers of Commiphora mukul. Fitoterapie, LII (5) (1981b) 221–222.Google Scholar
  20. 20.
    K. Asres, A. Tei, G. Moges, F. Spoker, M. Wink, Terpenoid composition of the wound-induced bark exudate of Commiphora tenuis from Ethiopia. Planta Med. 64 (1998) 473–475.PubMedGoogle Scholar
  21. 21.
    G.V. Satyavati, C. Dwarkanath, S.N. Tripathi, Experimental studies on the hypocholesterolemic effects of Commiphora mukul Engl. (Guggul). Indian J. Med. Res. 57 (1969) 1950–1962.PubMedGoogle Scholar
  22. 22.
    G.V. Satyavati, Gum guggul (Commiphora mukul)—the success story of an ancient insight leading to a modern discovery. Indian J. Med. Res. 87 (1988) 327–335.PubMedGoogle Scholar
  23. 23.
    R.B. Arora, D. Das, S.C. Kappor, R.C. Sharma, Effect of some fractions of Commiphora mukul on various serum lipids in hyperchloresterolemic chicks and their effectiveness in myocardial infraction in rats. Indian J. Expt. Biol. 11 (1973) 166–168.Google Scholar
  24. 24.
    V.S. Baldwa, V. Bhasin, P.C. Ranka, K.M. Mathur, Effects of Commiphora mukul (guggul) in experimental induced hyperlipidemia and atherosclerosis. J. Assoc. Physicians India, 29 (1981) 13–17.PubMedGoogle Scholar
  25. 25.
    S.K. Verma, A. Bordia, Effect of Commiphora mukul (gum guggulu) in patients of hyperlipidemia with special reference to HDL-cholesterol. Indian J. Med. Res. 87 (1988) 356–360.PubMedGoogle Scholar
  26. 26.
    K. Kuppurajan, S.S. Rajgopalan, T.K. Rao, R. Sitaraman, Effect of guggulu (Commiphora mukul Engl.) on serum lipids in obese, hypercholesterolemic and hyperlipemic cases. J. Assoc. Physicians India, 26 (1978) 367–373.PubMedGoogle Scholar
  27. 27.
    S. Lata, K.K. Saxena, V. Bhasin, R.S. Saxena, A. Kumar, V.K. Srivastava, Beneficial effects of Allium sativum, A. cepa and Commiphora mukul on experimantal hyperlipidemia and atherosclerosis—A comparative evaluation. J. Postgrad. Med. 37 (1991) 132–135.PubMedGoogle Scholar
  28. 28.
    R.B. Singh, M.A. Naiz, S. Ghosh, Hypolipidemic and antioxidant effects of Commiphora mukul as an adjunct to dietary in patients with hypercholesterolemia. Cardiovasc Drugs Ther. 8 (1994) 659–664.CrossRefPubMedGoogle Scholar
  29. 29.
    V.L. Mehta, C.L. Malhotra, N.S. Kalrah, The effect of various fractions of gum guggul on experimentally produced hypercholesteraemia in chicks. Indian J. Physiol Pharmacol., 12 (1968) 91.PubMedGoogle Scholar
  30. 30.
    G.V. Satyavati, Standardized extract: a promising hypolipidemic agent from gum guggul (Commiphora wightii), in: Economic and Medicinal Plant Research, Vol. 5. H. Wagner and N.R. Farnsworth (eds). Academic Press (1991) 47–79.Google Scholar
  31. 31.
    S.N. Tripathi, B.N. Upadhyay, A clinical trial of Commiphora mukul in the patients of ischaemic heart disease. J. Mole. Cell. Cardio. 10 (Supp. 1) (1978) 124.Google Scholar
  32. 32.
    K. Gopal, Clinical trial of ethyl acetate extract of gum gugulu (Standardized extract) in primary hyperlipidemia. J. Assoc. Physicians India. 34(4) (1986) 249–251.PubMedGoogle Scholar
  33. 33.
    S. Nityanand, J.S. Srivastava, O.P. Asthana, Clinical trials with gugulipid: a new hypolipademic agent. J. Assoc. Physicians India. 37(5) (1989) 323–328.PubMedGoogle Scholar
  34. 34.
    S.N. Tripathi, V.V.S. Sastri, G.V. Satyavati, Experimental and clinical studies of the effect of guggulu (C. mukul) in hyperlipidemia and thrombosis. J. Res. Indian Med. 2 (1968) 2.Google Scholar
  35. 35.
    S.C. Malhotra, M.M. Ahuja, K.R. Sundaram, Long-term clinical studies on the hypolipidemic effect of Commiphora mukul (guggulu) and clofibrate. Indian J. Med. Res. 65 (1977) 390–395.PubMedGoogle Scholar
  36. 36.
    K. Singh, R. Chander, N.K. Kapoor, Guggulsterone, a potent hypolipidemic, prevents oxidation of low-density lipoprotein. Phytother Res. 11 (1997a) 291–294.Google Scholar
  37. 37.
    S. Kaul, N.K. Kapoor, Reversal of changes of lipid peroxide, xanthine oxidase and superoxide dismutase by cardio-protective drugs in isoproterenol induced myocardial necrosis in rats. Indian J. Exp. Biol. 27 (1989) 625–627.PubMedGoogle Scholar
  38. 38.
    S.D. Seth, M. Maulik, C.K. Katyar, S.K. Maulik, Role of lipistat in protection against isoproterenol induced myocardial necrosis in rats: a biochemical and histopathological study. Indian J. Physiol. Pharmacol. 42 (1998) 101–106.PubMedGoogle Scholar
  39. 39.
    L. Mester, M. Mester, S. Nityanand, Inhibition of platelet aggregation by “guggulu” steroids. Planta Med., 37 (1979) 367–369.PubMedCrossRefGoogle Scholar
  40. 40.
    A. Gupta, N.K. Kapoor, S. Nityanand, Mechanism of hypolipidemic action of standardized extract. Indian J. Pharmacol. 14(1) (1982) 65.Google Scholar
  41. 41.
    V. Singh et al., Stimulation of low-density lipoprotein receptor activity in liver membrane of guggulsterone treated rats. Pharmacol. Res. 22(1) (1990) 37–43.CrossRefPubMedGoogle Scholar
  42. 42.
    Y.B. Tripathi, O.P. Malhotra, S.N. Tripathi, Thyroid stimulating action of Z-guggulsterone obtained from Commiphora mukul. Planta Med. (1984) 78–80.Google Scholar
  43. 43.
    Y.B. Tripathi, O.P. Malhotra, S.N. Tripathi, Thyroid stimulatory action of Z-guggulsterone: mechanism of action. Planta. Med. 54(4) (1988) 271–277.PubMedGoogle Scholar
  44. 44.
    S. Panda, A. Kar, Gugulu (Commiphora mukul) induced triiodothionine production: possible involvement of lipid peroxidation. Life Sci. 65 (1999) 137–141.CrossRefGoogle Scholar
  45. 45.
    R.B. Arora, V. Kapoor, S.K. Gupta, R.C. Sharma, Isolation of a crystalline steroidal compound from Commiphora mukul and its anti-inflammatory activity. Indian J. Exp. Biol. 9 (1971) 403.PubMedGoogle Scholar
  46. 46.
    R.B. Arora, L. Gupta, R.C. Sharma, S.K. Gupta, Standardisation of Indian indigenous drugs and preparations—II. Chemical and biological standardisation of Commiphora mukul (Guggul). J. Res. Indian Med. 7 (1972) 20–24.Google Scholar
  47. 147.
    J.N. Sharma, J.N. Sharma, Comparison of the anti-inflammatory activity of Commiphora mukul (indigenous drug) with those of phenylbutazone and ibuprofen in experimental arthritis induced by mycobactrial adjuvant. Arzneimittelforschung 27: 1455–1457.Google Scholar
  48. 48.
    M. Duwiejua, I.J. Zeitlin, P.G. Waterman, J. Chapman, G.J. Mhango, G.J. Provan, Anti-inflammatory activity of resins from some species of the plant family Burseraceae. Planta Med. 59 (1993) 12–16.PubMedGoogle Scholar
  49. 49.
    B.B. Singh, L. Mishra, N. Aquilina, F. Kohlbeck, Usefulness of guggul (Commiphora mukul) for oesteoarthritis: An experimental case study. Altern. Ther. Healthg Med. 120 (2001) 112–114.Google Scholar
  50. 50.
    T.G. Fourie, F.O. Snyckers, A pentacyclic triterpene with anti-inflammatory and analgesic activity from the roots of Commiphora merkeri. J. Nat. Prod. 52 (1989) 1129–1131.PubMedGoogle Scholar
  51. 51.
    S.C. Taneja, K.L. Dhar, Studies towards development of a new anti-inflammatory drug from Boswellia serrata gum-resin. In: Supplement to culivation and utilization of medicinal plants. S.S. Handa, M.K. Kaul (Eds) RRL, Jammu Tawi, India, (1996) pp. 525–536.Google Scholar
  52. 52.
    O.A. Olajide, Investigation of the effects of selected medicinal plants on experimental thrombosis. Phytother. Res. 13(3) (1999) 231–232.CrossRefPubMedGoogle Scholar
  53. 53.
    M.M. Al-Harbi, S. Qureshi, M. Raza, M.M. Ahmad, A.H. Shah, Gastric antiulcer and cytoprotective effect of Commiphora molmol in rats. J. Ethnopharmacol. 55 (1997) 141–150.CrossRefPubMedGoogle Scholar
  54. 54.
    A.H. Atta, A. Alkofahi, Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plants extracts. J. Ethanopharmacol. 60 (1998) 117–124.Google Scholar
  55. 55.
    S. Qureshi, M.M. Al-Harbi, M.M. Ahmed, M. Raja, A.B. Giangreco, A.H. Shah, Evaluation of the genotoxic, cytotoxic and antitumour properties of Commiphora molmol using normal and Ehrlich ascites carcinoma cell-bearing Swiss albino mice. Cancer Chemother. Pharmacol. 33 (1993) 130–138.CrossRefPubMedGoogle Scholar
  56. 56.
    M.M. Al-Harbi, S. Qureshi, M.M. Ahmad, S. Rafatullah, A.H. Shah, Effect of Commiphora molmol (oligo-gum-resin) on the cytological and biochemical changes induced by cyclophosphamide in mice. Am. J. Clin. Med. 22 (1994) 77–82.Google Scholar
  57. 57.
    R.P. Ubillas, C.D. Mendez, S.D. Jolad, J. Luo, S.R. King, D.M. Fort, Antihyperglycemic furanoses-quiterpenes from Commiphora myrrha. Planta Med. 65 (1999) 778–779.PubMedGoogle Scholar
  58. 58.
    R.C. Setia, M.V. Parthsarathy, J.J. Shah, Deveolpment, histochemistry and ultrastructure of gum-resin ducts in Commiphora mukul. Englr. Ann. Bot. 41 (1977) 999–1004.Google Scholar
  59. 59.
    G.M. Nair, K.R. Patel, S.V. Subramanium, J.J. Shah, Secretion of resin across the wall of the epithelial cells in the gum-resin canal of Commiphora mukul Engl. Ann. Bot. 47 (1981) 419–421.Google Scholar
  60. 60.
    R.C. Setia, J.J. Shah, Histological, histochemical and ultrastructure aspect of gum and gum-resin producing structures in plants. Ann. Rev. Plant Sci., CP Malik (Ed) Kalyani Pub. New Delhi (1979) 315–332.Google Scholar
  61. 61.
    J.R. Bhatt, N.M.B. Nair, H.Y. MohanRam, Enhancement of oleo-gum resin production in Commiphora wightii by improved tapping technique. Curr. Sci. 58 (1989) 349–46.Google Scholar
  62. 62.
    A.K. Singh, Gum-resin production associated cellular and organ differentiation in Commiphora wightii. Ph.D. Thesis, M.L. Sukhadia University, Udaipur, (1995) 1–119.Google Scholar
  63. 63.
    P. Singh, M.L. Sharma, S. Mukherjee, Effect of indole butyric acid on sprouting in plant cuttings of Commiphora wightii (Arnott.) Bhand. Indian Drugs 26 (1989) 515–516.Google Scholar
  64. 64.
    R.R. Shah, D.B. Patel, D.H. Patel, K.C. Dalal, Harmonal effect on germination of guggul cuttings. Indian Drugs 20 (1983) 435–437.Google Scholar
  65. 65.
    D.N. Puri, R.N. Kaul, Effect of size of stem cuttings on rooting in Commiphora mukul. Indian For. 98 (1972) 252–257.Google Scholar
  66. 66.
    S. Kshetrapal, R. Sharma, Studies on the effect of various plant extracts in sprouting behaviour of Commiphora wightii (Arnott.) Bhand. and C. agallacha. J. Indian Bot. Soc. 72 (1992) 73–75.Google Scholar
  67. 67.
    S. Kumar, K.G. Ramawat, Somatic embryogenesis in callus and cell cultures of Commiphora wightii: problems, perseverance and prospects. National Symp. Prospects and Potential of Plant Biotech in India. J. N. Vyas Univ. Jodhpur, pp. (2000) 12.Google Scholar
  68. 68.
    D.M. Barve, A.R. Mehta, Clonal propagation of mature elite trees of Commiphora wightii. Plant Cell Tiss. Org. Cult. 35 (1993) 237–244.CrossRefGoogle Scholar
  69. 69.
    T. Murashige, F. Skoog, A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physol. Plantarum., 15 (1962) 473–497.Google Scholar
  70. 70.
    O.L. Gamborg, R.A. Miller, K. Ojima, Nutrient requirements of suspension cultures of soybean root cell. Exp. Cell Res. 50 (1968) 51–158.CrossRefGoogle Scholar
  71. 71.
    S. Kumar, S.S. Suri, K.C. Sonie, K.G. Ramawat, Establishmennt of embryogenic cultures and somatic embryogenesis in callus cultures of guggul-Commiphora wightii (Arnott.) Bhand. Indian J. Exp. Biol. 41 (2003) 69–77.PubMedGoogle Scholar
  72. 72.
    S. Kumar, Cell, Callus and tissue culture of Commiphora wightii for developing technology for its micropropagation. Ph.D. Thesis, M.L. Sukhadia University, Udaipur, (2002) 1–114.Google Scholar
  73. 73.
    R. Sharma, S.S. Suri, K.G. Ramawat, K.C. Sonie, Biotechnological approaches to the medicinal plants of Aravalli Hills with special reference to Commiphora wightii, in: Role of Biotechnology in Medicinal and Aromatic plants. I.A. Khan and A. Khanum (Eds). Ukaz Pub. Hyderabad, (1999) 140–164.Google Scholar
  74. 74.
    A.K. Singh, S.S. Suri, K.G. Ramawat, Somatic embryogenesis from immature zygotic embryos of Commiphora wightii, a woody medicinal plant. Gartenbauwissen. 62 (1997b) 44–48.Google Scholar
  75. 75.
    S.S. Suri, K.G. Ramawat, Factors affecting somatic embryogenesis in callus and cell cultures of Commiphora wightii. National Symp. Commercial Aspect Plant Tissue Cult., Mol. Biol. & Medicinal Plant Biotechnology. Jamia Hamdard Univ., New Delhi (1998) pp.12.Google Scholar
  76. 76.
    P. Phale, J. Subramani, P.N. Bhatt, A.R. Mehta, Viability and guggulsterol production in immobilized tissue cultured cells of Commiphora wightii. Indian J. Exp. Biol. 27 (1989) 338–340.Google Scholar

Copyright information

© Anamaya Publishers 2004

Authors and Affiliations

  • Sandeep Kumar
    • 1
  • S.S Suri
    • 1
  • K.C. Sonie
    • 1
  • K.G. Ramawat
    • 1
  1. 1.Laboratory of Bio-Molecular Technology, Department of BotanyM.L. Sukhadia UniversityUdaipurIndia

Personalised recommendations