Styles and Productivity of Mud Diapirism along the Middle American Margin

Part II. Mound Culebra and Mounds 11 and 12
  • Tobias Moerz
  • Naomi Fekete
  • Achim Kopf
  • Warner Brueckmann
  • Stefan Kreiter
  • Veit Huehnerbach
  • Douglas Masson
  • Daniel A. Hepp
  • Mark Schmidt
  • Steffen Kutterolf
  • Heiko Sahling
  • Friedrich Abegg
  • Volkhard Spiess
  • Erwin Suess
  • Cesar R. Ranero
Part of the NATO Science Series book series (NAIV, volume 51)

Abstract

We present sedimentological and structural data and conceptual models for the evolution of two types of diapiric mud moundss offshore Costa Rica. Dozens of exposed mud mounds are found in the smooth domain of the margin with Mound Culebra being the most prominent example. Mound Culebra is a fault controlled feature with steep flanks (∼10–20°) and a lack of recent mud flows. The extruded material consists of overcompacted silty clay with signs of intense brittle deformation, brecciation, hydrofracturing and secondary perforation by closely spaced conduits. The southern rough domain is characterized by numerous local tectonic regimes linked to seamount subduction and the collision of the Cocos ridge all associated with diverse forms of venting. Diapirism seems to play only a minor role and Mound 11 and 12 are examples of fault controlled, low relief mud volcanoes with shallow-dipping flanks. Mud flow sequences, vent debris and the presence of gas hydrates in the shallow subsurface favor an episodic, gas driven eruption behavior.

Key words

Costa Rica margin mud diapirism mud volcanoes mud flows fluid conduits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azizi, F., 1999. Applied Analyses in Geotechnics, E & FN Spon, London, New York, 1999.Google Scholar
  2. 2.
    Bohrmann, G., Heeschen, K., Jung, C., Weinrebe, Baranov, W.B., Cailleau, B., Heath, R., Hühnerbach, V., Hort, M., Masson, D., and Trummer, I., 2002. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin, Terra Nova, 14, 69–79.Google Scholar
  3. 3.
    Brown, K.M., 1990. The Nature and Hydrogeologic Significance of Mud Diapirs and Diatremes for Accretionary Systems, J. Geophys. Res., 96, 8969–8982.Google Scholar
  4. 4.
    Cita, M.B., Camerlenghi, A., Erba, E., F.M. McCoy, F.M., Castradory, D., Cazzani, A., Guasti, G., Gianbastiani, M., Lucci, R., Nolli, V., Pezzi, G., Redaelli, M., Rizzi, E., Torricelli, S. and Violanti, D., 1989. Discovery of mud diapirism on the Mediterranean Ridge. A preliminary report, Boll. Soc. Geol. It., 108, 537–543.Google Scholar
  5. 5.
    DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1994. Effect of recent revision to the geomagnetic reversal timescale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194.Google Scholar
  6. 6.
    Grevemeyer, I., Kopf, A. J., Kaul, N., Fekete, N., Villinger, H., Heesemann, M., Gennerich, M. Müller, H.-H., Wallmann, K., and Weinrebe, W., 2004. Fluid flow through active mud dome Mound Culebra offshore Nicoya Peninsula, Costa Rica: evidence from heat flow surveying, Mar Geol., 207, 145–157.Google Scholar
  7. 7.
    Henry, P., Le Pichon, X., Lallemant, S., Lance, S., Martin, J.B., Foucher, J.P., Fiala-Médioni, A., Rostek, F., Guilhaumou, N., Pranal, V., and Castrec, M., 1996. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: Results from Manon cruise, J. Geophys. Res., 101, 20,297–20,323.Google Scholar
  8. 8.
    Mau, S., Sahling, H., Rehder, G., Soeding, E., Masson, D., and Suess, E. Seafloor observations and methane plumes of mud extrusions along the erosive convergent margin of Costa Rica, Mar. Geol., in prep.Google Scholar
  9. 9.
    Meschede, M., Zweigel, P., Frisch, W., and Völker, D., 1999. Mélange formation by subduction erosion: the case of the Osa mélange in southern Costa Rica, Terra Nova, 11, 141–148.Google Scholar
  10. 10.
    Murton, B.J. and Biggs, J., 2003. Numerical modelling of mud volcanoes and their flows using constraints from the Gulf of Cadiz, Mar Geol., 195, 223–236.Google Scholar
  11. 11.
    Pecher, I.A., Kukowski, N., Huebscher, C., Greinert, J., Bialas, J., and GEOPEG Working Group, 2001. The link between bottom-simulating reflections and methane flux into the gas hydrate stability zone — new evidence from Lima Basin, Peru Margin, Earth Planetary Sci. Lett., 185, 343–354.Google Scholar
  12. 12.
    Reed, D.L., Silver, E.A, Tagudin, J.E., Shipley, T.H., and Vrolijk, P., 1990. Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama, Mar. Petrol. Geol., 7, 44–54.Google Scholar
  13. 13.
    Shipley, T.H., McIntosh, K.D., Silver, E.A., and Stoffa, R.L., 1992. Three-Dimensional Seismic Imaging of the Costa Rica Accretionary Prism: Structural Diversity in a Small Volume of the Lower Slope, J. Geophys. Res., 97, 4439–4459.Google Scholar
  14. 14.
    Schmidt, M., Hensen, C., Mörz, T., Müller, C., Grevemeyer, I., Kaul, N., Wallmann, K., Mau, S., and Brückmann, W. Shallow surface methane hydrate accumulation related to mud volcanism at „Mound 11“ (Costa Rica forearc), Earth Planetary Sci. Lett., submitted.Google Scholar
  15. 15.
    Soeding, E., Wallmann, K., Suess, E., and Flueh, E., 2003. RV METEOR, Cruise Report M54/2+3. Fluids and Subduction, Costa Rica 2002, in GEOMAR Rep., 111, GEOMAR, Kiel.Google Scholar
  16. 16.
    Vannucchi, P., Ranero, C.R., Galeotti, S., Straub, S.M., Scholl, D.W., and McDougall-Ried, K., 2003. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for non-steady rates of crustal recycling at subduction zones, J. Geophys. Res., 108, n. B11, 2511.Google Scholar
  17. 17.
    Von Huene, R., Ranero, C.R., Weinrebe, W., and Hinz, K., 2000. Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism, Tectonics, 19, 314–334.Google Scholar
  18. 18.
    Weinrebe, W., and Flueh, E., 2002. FS/RV SONNE, Cruise Report SO163. Subduction 1, Costa Rica 2002, in GEOMAR Rep., 106, GEOMAR, Kiel.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Tobias Moerz
    • 1
  • Naomi Fekete
    • 1
  • Achim Kopf
    • 3
  • Warner Brueckmann
    • 1
    • 2
  • Stefan Kreiter
    • 4
  • Veit Huehnerbach
    • 5
  • Douglas Masson
    • 5
  • Daniel A. Hepp
    • 1
  • Mark Schmidt
    • 1
    • 6
  • Steffen Kutterolf
    • 1
  • Heiko Sahling
    • 1
  • Friedrich Abegg
    • 2
  • Volkhard Spiess
    • 3
  • Erwin Suess
    • 1
    • 2
  • Cesar R. Ranero
    • 1
    • 2
  1. 1.Sonderforschungsbereich 574Christian-Albrechts-University of KielKielGermany
  2. 2.GEOMARKielGermany
  3. 3.Research Center Ocean MarginsUniversity of BremenBremenGermany
  4. 4.Technische Universität BerlinBerlinGermany
  5. 5.Southampton Oceanography Centre, European WaySouthamptonUK
  6. 6.Institute of GeosciencesKielGermany

Personalised recommendations