Magnetospheric Multiscale Mission

Cross-scale Exploration of Complexity in the Magnetosphere
  • A. Surjalal Sharma
  • Steven A. Curtis
Part of the Astrophysics and Space Science Library book series (ASSL, volume 321)


The physical processes in the magnetosphere span a wide range of space and time scales and due to the strong cross-scale coupling among them the fundamental processes at the smallest scales are critical to the large scale processes. For example, many key features of magnetic reconnection and particle acceleration are initiated at the smallest scales, typically the ion gyro-radii, and then couples to meso-scale and macro-scale processes, such as plasmoid formation. The Magnetospheric Muliscale (MMS) mission is a multi spacecraft mission dedicated to the study of plasma physics at the smallest scales and their cross-scale coupling to global processes. Driven by the turbulent solar wind, the magnetosphere is far from equilibrium and exhibits complex behavior over many scales. The processes underlying the multi-scale and intermittent features in the magnetosphere are fundamental to sun-earth connection. Recent results from the four spacecraft Cluster and earlier missions have provided new insights into magnetospheric physics and will form the basis for comprehensive studies of the multi-dimensional properties of the plasma processes and their inter-relationships. MMS mission will focus on the boundary layers connecting the magnetospheric regions and provide detailed spatio-temporal data of processes such as magnetic reconnection, thin current sheets, turbulence and particle acceleration. The cross-scale exploration by MMS mission will target the microphysics that will enable the discovery of the chain of processes underlying sun-earth connection.

Key words

magnetosphere multiscale phenomena cross-scale coupling multi-spacecraft mission reconnection particle acceleration thin current sheets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelopoulos, V., T. Mukai, and S. Kokubun, Evidence for intermittency in Earth's plasma sheet and implications for self-oganized criticality, Phys. Plasmas, 6, 4161, 1999.CrossRefADSGoogle Scholar
  2. Asano, Y., T. Mukai, M. Hoshino, Y. Saito, H. Hayakawa, and T. Nagai. (2003). Evolution of the thin current sheet in a substorm observed by Geotail, J. Geophys. Res., 108, doi:10.1019/2002JA009785, 2003.Google Scholar
  3. Baker, D. N., A. J. Klimas, R. L. McPherron, and J. Buechner, The evolution from weak to strong geomagnetic activity: An interpretation in terms of deterministic chaos, Geophys. Res Lett., 17, 41, 1990.ADSCrossRefGoogle Scholar
  4. Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., McPherron, R. L., Neutral line model of substorms: Past results and present view. J. Geophys. Res., 101, 12,975, 1990.ADSGoogle Scholar
  5. Bargatze, L. F., Baker, D. N., McPherron, R. L., Hones, Jr., E. W., Magnetospheric impulse response for many levels of geomagnetic activity. J. Geophys. Res., 90, 6387, 1985.ADSCrossRefGoogle Scholar
  6. Borovsky, J. E., Nemzek, R. J. Belian, R. D., The occurrence rate of magnetospheric-substorm onsets: Random and periodic substorms. J. Geophys. Res., 98, 3807, 1993.ADSCrossRefGoogle Scholar
  7. Borovsky, J. E., Nemzek, R. J. Belian, R. D., The Earth's plasma sheet as a laboratory for flow turbulence in high beta MHD, J. Plasma Phys., 57, 1–34, 1997.CrossRefADSGoogle Scholar
  8. Borovsky, J. E., and H. O. Funsten, MHD turbulence in the Earth's plasma sheet: Dynamics, dissipation, and driving, J. Geophys. Res., 108(A7), 3807, doi:10.1029/2002JA009625, 2003.CrossRefGoogle Scholar
  9. Curtis, S. A., The Magnetospheric Multiscale Mission: Resolving Fundamental Processes in Space Plasmas, NASA/TM-2000-209883, National Aeronautics and Space Administration, 1999.Google Scholar
  10. Daglis, I. A., and W. I. Axford, Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail, J. Geophys. Res., 101, 5047, 1996.CrossRefADSGoogle Scholar
  11. Deng, X. H., and H. Matsumoto, Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves, Nature, 410, 557, 2001.CrossRefADSGoogle Scholar
  12. Drake, J. M..Google Scholar
  13. Freeman, M. P., Watkins, N. W., D. J. Riley, Evidence for a solar wind origin of the power law burst lifetime distribution of the AE index, Geophys. Res. Lett., 27, 1087, 2000.CrossRefADSGoogle Scholar
  14. Hoshino, M, R. L. Stenzel and K. Shibata (eds.), Magnetic Reconnection in Space and Laboratory Plasmas, Terra Sci. Pub., Tokyo, 2001.Google Scholar
  15. Huang, C.-S., G. D. Reeves, J. E. Borovsky, R. M. Skoug, Z. Y. Pu, and G. Le, Periodic magnetospheric substorms and their relationship to with solar wind variations, J. Geophys. Res., 108(A6), 3807, doi:10.1029/2002JA009704, 2003.Google Scholar
  16. Jensen, H. J., Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambridge, University Press, 1998.MATHGoogle Scholar
  17. Klimas, A. J., J. A. Valdivia, D. Vassiliadis, D. N. Baker, M. Hesse, and J. Takalo, Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet, J. Geophys. Res., 105, 18,765, 2000.CrossRefADSGoogle Scholar
  18. Korth, A., Friedel, R. H. W., M. G. Henderson, F. Frutos-Alfaro, and C. G. Moukis, O+ transport into the ring current: Storm versus substorm, in Disturbances in Geospace: The Storm-Substorm Relationship, Geophysical Monograph series, Vol. 142, eds., A. S. Sharma, Y. Kamide and G. S. Lakhina, Amer. Geophys. Union, 2003.Google Scholar
  19. Lyon, J. G., The solar wind-magnetosphere-ionosphere system, Science, 288, 1987, 2000.CrossRefADSGoogle Scholar
  20. National Research Council, Plasma Physics of the Local Cosmos, The National Academies Press, Washington, DC, 2004.Google Scholar
  21. Ohtani, S., Higuchi, T., Lui, A. T. Y., Takahashi, K., Magnetic fluctuations associated with tail current disruption: Fractal analysis. J. Geophys. Res., 100, 19,135, 1995.ADSGoogle Scholar
  22. Ohtani, S., Higuchi, T., Lui, A. T. Y., Takahashi, K., AMPTE/CCE-SCATHA simultaneous observations of substorm associated magnetic fluctuations. J. Geophys. Res., 103, 4671, 1998.CrossRefADSGoogle Scholar
  23. Oieroset, M., T. D. Phan, M. Fujimoto, R. P. Lin, and R. P. Lepping, In situ detection of collisioless reconnection in the Earth's magnetotail, Nature, 412, 414, 2001.CrossRefADSGoogle Scholar
  24. Oieroset, M., R. P. Lin, T. D. Phan, D. E. Larson and S. D. Bale, Evidence for elctron acceleration up to ~300 keV in the magnetic reconnection diffusion region of Earth's magnetotail, Phys. Rev. Lett., 89, 195001, 2002.Google Scholar
  25. Parker, E. N., Magnetic reconnection and the lowest energy state, in Magnetic Reconnection in Space and Laboratory Plasmas, pp. 411–416, Terra Sci. Pub., Tokyo, 2001.Google Scholar
  26. Parker, E. N., Spontaneous Current sheets in Magnetic Fields, Oxford Univ. Press., Oxford, 1994.Google Scholar
  27. Phan, T. D., L. M. Kistler, B. Klecker, G. Haerendel, G. Paschmann, B. U. O. Sonnerup, W. Baumjohann, M. B. Bavassano-Cattano, C. W. Carlson, A. M. DiLellis, K. H. Fornacon, L. A. Frank, M. fujimoto, E. Geogescu, S. Kokubun, E. Moebius, T. Mukai, M. Oieroset, W. R. Paterson, and H. Reme, Extended magnetic reconnection at the Earth's magnetopause from detection of bi-directional jets, Nature, 404, 848, 2000.CrossRefADSGoogle Scholar
  28. Priest, E. R., Solar flare theory and the status of flare understanding, in High Energy Solar Astrophysics-Anticipating HESSI, eds. R. Ramaty and N. Mandzhavidze, ASP Conf. Ser. 206, pp. 13–26, Astron. Soc. Pacific, 2000.Google Scholar
  29. Pritchard, D., Borovsky, J. E., Lemons, P. M., Price, C. P., Time dependence of substorm recurrence: An information theoretic analysis. J. Geophys. Res., 101, 15,359, 1996.ADSGoogle Scholar
  30. Rostoker, G., Implications of the hydrodynamic analogue for the solar-terrestrial interaction and the mapping of high latitude convection pattern into the magnetotail, Geophys. Res. Lett., 11, 251, 1984ADSCrossRefGoogle Scholar
  31. Sergeev, V. A., Pulkkinen, T. I., Pellinen, R. J., Coupled mode scenario for the magnetospheric dynamics. J. Geophys. Res., 101, 13,047, 1996.ADSGoogle Scholar
  32. Sergeev, V. A., A. Runov, W. Baumjohann, R. Nakamura, T. L. Zhang, M. Volwerk, A. balogh, H. reme, J. A. Sauvaud, M. Andre, and B. Klecker, Current sheet flapping motion and structure observed by Cluster, Geophys. Res. Lett., 30, 1327, doi:10.1029/2002GL016500, 2003.CrossRefADSGoogle Scholar
  33. Shao, X., M. I. Sitnov, A. S. Sharma, K. Papadopoulos, C. C. Goodrich, P. N. Guzdar, G. M. Milikh, M. J. Wiltberger, and J. G. Lyon, Phase transition-like behavior of magnetospheric substroms: Global MHD simulation results, J. Geophys. Res., 108(A1), 1037, doi:10.1029/2001JA009237, 2003.CrossRefGoogle Scholar
  34. Sharma, A. S., Assessing the magnetosphere's nonlinear behavior: its dimension is low, its predictability, high. Reviews of Geophysics (Suppl.), 35, 645–650, 1995.CrossRefADSGoogle Scholar
  35. Sharma, A. S., Sitnov, M. I., and Papadopoulos, K., Substorms as nonequilibrium phase transitions, J. Atmos. Sol. Terr. Phys., 63, 1399, 2001.CrossRefADSGoogle Scholar
  36. Sharma, A. S., Vassiliadis, D. V., Papadopoulos, K., Reconstruction of low-dimensional magnetospheric dynamics by singular spectrum analysis. Geophys. Res. Lett., 20, 335, 1993.ADSCrossRefGoogle Scholar
  37. Sharma, A. S., Papadopoulos, K., Vassiliadis, D., Valdivia, J. A., Klimas, A. J., and Baker, D. N., Phase transition-like behavior of the magnetosphere during substorms. J. Geophys. Res., 105, 12,955, 2000b.ADSGoogle Scholar
  38. Sharma, A.S., Sitnov, M. I., Ukhorskiy, A. Y., and J. A. Valdivia, Modelling the magnetosphere from time series data, in Disturbances in Geospace: The Storm-substorm Relationship, Geophysical monograph series, vol. 142, edited by A. S. Sharma, Y. Kamide and G. S. Lakhina, Amer. Geophys. Union, pp. 231–241, 2003.Google Scholar
  39. Shay., M. A., J. F. drake, B. N. Rogers and R. R. E., The scaling of magnetic reconnection for large systems, Geophys. Res. Lett., 26, 2163, 1999.CrossRefADSGoogle Scholar
  40. Siscoe, G. L., The magnetosphere: A union of independent parts. EOS, Trans. AGU, 72, 494–497, 1991.ADSCrossRefGoogle Scholar
  41. Sitnov, M. I., and A. S. Sharma, Role of Transient Electrons and Microinstabilities in the Tearing Instability of the Geomagnetic Current Sheet and the General Scenario of the Substorm as a Catastrophe, in Substorms-4: Proc. 4th Internl. Conf. on Substorms, edited by S. Kokubun and Y. Kamide, Terra Sci., Tokyo, pp. 539–542, 1998.Google Scholar
  42. Sitnov, M. I., Sharma, A. S., Papadopoulos, K., Vassiliadis, D., Valdivia, J. A., Klimas, A. J., and Baker, D. N., Phase transition-like behavior of the magnetosphere during substorms. J. Geophys. Res., 105, 12,955, 2000.ADSGoogle Scholar
  43. Sitnov, M. I., L. M. Zelenyi, H. V. Malova, and A. S. Sharma, Thin current sheetembedded within a thicker plasma sheet: Self-consistent kinetic theory, J. Geophys. Res., 105, 13,029, 200b.Google Scholar
  44. Sitnov, M. I., Sharma, A. S., Papadopoulos, K., Vassiliadis, D., Valdivia, J. A., Klimas, A. J., and Baker, D. N., Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality tononequilibrium phase transitions, Phys.. Rev. E., 65, 016116, 2001.Google Scholar
  45. Somov, B. V., Cosmic Plasma Physics, Kluwer Academic Pub., 2000.Google Scholar
  46. Terasawa, T., and M. Scholer, The heliosphere as an astrophysical laboratory for particle acceleration, Science, 244, 1050, 1989.ADSCrossRefGoogle Scholar
  47. Ukhorskiy, A.Y., M. I. Sitnov, A. S. Sharma and K. Papadopoulos 2004, Global and multiscale dynamics of the magnetosphere, Geophys Res. Lett., 31, L08802, doi:10.1029/2003GL018932, 2004.Google Scholar
  48. Uritsky, V. M., A. J. Klimas, D. Vassiliadis, D. Chua, and G. D. Parks, Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: The dynamic magnetosphere is an avalanching system, J. Geophys. Res., 107(A12), 1426, 2002.CrossRefGoogle Scholar
  49. Vassiliadis, D., Sharma, A. S., Eastman, T. E., Papadopoulos, K., 1990. Low-dimensional chaos in magnetospheric activity from AE time series. Geophys. Res. Lett., 17, 1841.ADSCrossRefGoogle Scholar
  50. Vondrak, R., J. Slavin, L. Zelenyi, M. Guhathakurta, S. Curtis and B. Tsurutani, Measurement strategies for future missions to understand geospace dynamics, in Disturbances in Geospace: The Storm-substorm Relationship, Geophysical monograph series, vol. 142, Eds. A. S. Sharma, Y. Kamide and G. S. Lakhina, Amer. Geophys. Union, pp. 255–268, 2003.Google Scholar
  51. Zelenyi, L. M., D. C. delcourt, H. V. Malova, and A. S. Sharma, “Aging” of the magnetotail thin current sheet, Geophys. Res. Lett., 29,(12), 49–1, doi:10.1029/2001GL013789, 2002.CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A. Surjalal Sharma
    • 1
  • Steven A. Curtis
    • 2
  1. 1.University of MarylandCollege ParkUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations