Advertisement

Transcriptomics in Sinorhizobium Meliloti

  • A. Becker
  • F. J. de Bruijn
Part of the Nitrogen Fixation: Origins, Applications, and Research Progress book series (NITR, volume 3)

Keywords

Infection Thread SINORHIZOBIUM MELILOTI Bacteroid Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ampe, F., Kiss, E., Sabourdy, F., and Batut, J. (2003). Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol., 4, R15.PubMedGoogle Scholar
  2. Ampe, F., and Batut, J. (2003). Macro-arrays protocols for gene expression studies in bacteria. In A. Akkermans, F. J. de Bruijn, G. Kowalchuk and J. van Elsas (Eds.), Molecular microbial ecology manual, 2nd Edit. (in press). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  3. Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S., et al. (2000). Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J. Biol. Chem. 275, 29672–29684.PubMedGoogle Scholar
  4. Bardin, S., Dan, S., Osteras, M., and Finan, T. M. (1996). A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti. J. Bacteriol., 178, 4540–4547.PubMedGoogle Scholar
  5. Bardin, S., Voegele, R. T. and Finan, T. M. (1998). Phosphate assimilation in Rhizobium (Sinorhizobium) meliloti: Identification of a pit-like gene. J. Bacteriol., 180, 4219–4226.PubMedGoogle Scholar
  6. Barnett, M. J., Fisher, R. F., Jones, T., Komp, C., Abola, A. P., Barloy-Hubler, F., et al. (2001). Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. USA 98, 9883–9888.PubMedGoogle Scholar
  7. Becker, A. (2003). Design of microarrays for genome-wide expression profiling. In A. Akkermans, F. J. de Bruijn, G. Kowalchuk and J. van Elsas (Eds.), Molecular microbial ecology manual, 2nd Edit. (in press). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  8. Bergès, H., Lauber, E., Liebe, C., Batut, J., Kahn, D., de Bruijn, F. J., et al. (2003) Development of Sinorhizobium meliloti pilot macroarrays for transcriptome analysis. Appl. Environ. Microbiol., 69, 1214–1219.PubMedGoogle Scholar
  9. Beringer, J. E. (1974). R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol., 84, 188–198.PubMedGoogle Scholar
  10. Brewin, N. J. (1998). Tissue and cell invasion by Rhizobium: The structure and development of infection threads and symbiosomes. In H. P. Spaink, A Kondorosi, and P. J. J. Hooykaas (Eds.). The rhizobiaceae (pp.417–429). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  11. Capela, D., Barloy-Hubler, F., Gouzy, J., Bothe, G., Ampe, F., Batut, J., et al. (2001). Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci. USA, 98, 9877–9882.PubMedGoogle Scholar
  12. Catoira, R., Galera, C., de Billy, F., Penmetsa, V., Journet, E.-P., Maziiet, F., et al. (2000). Four genes of Medicago truncatula controlling components of a Nod factor pathway. Plant Cell, 12, 1647–1666.PubMedGoogle Scholar
  13. Cook, D. R., VandenBosch K., de Bruijn F. J., and Huguet T. (1997). Model legumes get the nod. Plant Cell, 3, 275–281Google Scholar
  14. Davey, M. E., and de Bruijn, F. J. (2000). A homologue of the tryptophan-rich sensory protein and FixL regulate a novel nutrient-deprivation Sinorhizobium meliloti locus. Appl. Envron. Microbiol., 66, 5353–5359.Google Scholar
  15. David, M., Daveran, M. L., Batut, J., Dedieu, A., Domergue, O., Ghai, J., et al. (1988). Cascade regulation of nif gene expression in Rhizobium meliloti. Cell, 54, 671–683.PubMedGoogle Scholar
  16. Denarie, J., Debelle, F., and Prome, J. C. (1996). Rhizobium lipo-chitooligosaccharide nodulation factors: Signalling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem., 65, 503–535.PubMedGoogle Scholar
  17. Didier, G., Brézellee, P., Remy E., and Henaut, A (2001). GeneAnova-gene expression analysis of variance. Bioinformatics, 1, 490–491.Google Scholar
  18. Ferguson, G. P., Roop, I. I., and Walker, G. C. (2002)Deficiency of a Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope. J. Bacteriol., 184, 5625–5632.PubMedGoogle Scholar
  19. Finan, T. M., Weidner, S., Chain, P., Buhrmester, J., Wong, K., Vorhölter, F.-J., et al. (2001). The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci. USA, 98, 9889–9894.PubMedGoogle Scholar
  20. Fousard, M., Garnerone, A. M., Ni, F., Soupene, E., Boistard, P., and Batut, F. (1997) Negative autoregulation of the Rhizobium meliloti fixK gene is indirect and requires a newly identified regulator, FixT. Mol. Microbiol., 25, 27–37.PubMedGoogle Scholar
  21. Galibert, F., Finan, T. M., Long, S. R., Pühler, A., Abola, P., Ampe, F., et al. (2001). The composite genome of the legume symbiont Sinorhizobium meliloti. Science, 293, 668–672.PubMedGoogle Scholar
  22. Glazebrook, J., Ichige, A., and Walker, G. C. (1993). A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev., 7, 1485–1497.PubMedGoogle Scholar
  23. Gmuender, H., Kuratli, K., Di Padova, K., Gray, C., Keck, W., and Evers, S. (2001). Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin, combined transcription and translation analysis. Genome Res., 11, 28–42.PubMedGoogle Scholar
  24. Kaminski, P. A., Batut, J., and Boistard, P. (1998). A survey of nitrogen fixation by rhizobia. In H. P. Spaink, A Kondorosi, and P. J. J. Hooykaas (Eds.). The rhizobiaceae (pp. 431–460). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  25. Kane, D. K., Jatkoe, T. A., Stumpf, Lu, J., Thomas, J. D., and Madore, S. J. (2000). Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucl. Acids Res., 28, 4552–4557.PubMedGoogle Scholar
  26. Lockhard, D. J., and Winzeler, E. A. (2000). Genomics, gene expression and DNA arrays. Nature, 405, 827–836.PubMedGoogle Scholar
  27. Loos, A., Glaneman, C., Willis, L. B., O’Brian, M., Lessard, P. A., Gerstmeir, R., et al. (2001). Development and validation of Corynebacterium DNA microarrays. Appl. Environ. Microbiol., 67, 2310–2318.PubMedGoogle Scholar
  28. Milcamps, A., Ragatz, D. M., Lim, P., Berger, K. A. and de Bruijn, F. J. (1998). Isolation of carbon-and nitrogen-deprivation induced loci of Sinorhizobium meliloti by Tn5-luxAB mutagenesis. Microbiol., 144, 3205–3218.Google Scholar
  29. Pellock, B. J., Cheng, H. P., and Walker, G. C. (2000) Alfalfa root nodule invasion is dependent on Sinorhizobium meliloti polysaccharides. J. Bacteriol., 182, 4310–4318.PubMedGoogle Scholar
  30. Perret, X., Freiberg, C., Rosenthal, A., Broughton, W. J., and Fellay, R. (1999). High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol. Microbiol., 32, 415–425.PubMedGoogle Scholar
  31. Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J., Völker, U., and Hecker, M. (2001). Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol., 183, 5617–5631.PubMedGoogle Scholar
  32. Rhodius, V., Van Dyk, T. K., Gross, C., and LaRossa, R. A. (2002). Impact of genomic technologies on studies of bacterial gene expression. Ann. Rev. Microbiol., 56, 599–624.Google Scholar
  33. Richmond, C. S., Glasner, J. D., Mau, R., Jin, F. R., and Blattner, F. R. (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucl. Acids Res., 27, 3821–3835.PubMedGoogle Scholar
  34. Ricillo, P. M., Collavino, M. M., Grasso D. H., England, R., de Bruijn, F. J., and Aguilar, O. M. (2000). A guaB mutant strain of Rhizobium tropici CIAT899 pleiotropically defective in thermal tolerance and symbiosis. Mol. Plant-Microbe Interact., 13, 1228–1236.PubMedGoogle Scholar
  35. Ricillo, P. M., Muglia, C. I., de Bruijn, F. J., Roe, A. J., Booth, I. R., and Aguilar, O. M. (2001) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J. Bacteriol., 182, 1748–1753.Google Scholar
  36. Rozen, S., and Skaletsky, H. J. (1996, 1997, 1998). Primer3. Code available at http, //www-genome.wi.mit.edu/genome_software/other/primer3.htmlGoogle Scholar
  37. Santos, R., Herouard, D., Sigaud, S., and Puppo, A. (2000). Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interactions. Mol. Plant-Microbe Interact., 14, 86–89.Google Scholar
  38. Sekowska, A., Robin, S., Daudin, J. J., Henaut, A. (2001). Extracting biological information from DNA arrays: an unexpected link beteen arginine and methionine metabolism in Bacillus subtilis. Genome Biol., 2, 0019.Google Scholar
  39. Soupene, E., Fousard, M., Boistard, P., Truchet, G., and Batut, J. (1995). Oxygen as a key develomental regulator of Rhizobium meliloti N2 fixation gene expression within the alfalfa root nodule. Proc. Natl. Acad. Sci. USA, 92, 3759–3763.PubMedGoogle Scholar
  40. Trebiatowski, J. R., Ragatz, D. M., and de Bruijn, F. J. (2000). Isolation and regulation of Sinorhizobium 1021 loci induced by oxygen limitation. Appl. Envir. Micobiol., 67, 3728–3731.Google Scholar
  41. Vasse, J., de Billy, F., Camut, S., and Truchet, G. (1990). Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol., 172, 4295–4306.PubMedGoogle Scholar
  42. Voegele, R. T., Bardin, S., and Finan, T. M. (1997). Characterization of the Rhizobium (Sinorhizobium) meliloti high-and low-affinity phosphate uptake systems. J. Bacteriol., 179, 7226–7232.PubMedGoogle Scholar
  43. Watson, R. J., Chan, Y. K., Wheatcroft, R., Yang, A. F., and Han, S. H. (1988). Rhizobium meliloti genes rquired for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J. Bacteriol., 170, 927–934.PubMedGoogle Scholar
  44. Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C., Matsunaga, M., et al. (2001). Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res., 29, 683–692.PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A. Becker
    • 1
  • F. J. de Bruijn
    • 2
  1. 1.Lehrstuhl für Genetik, Fakultät für BiologieUniversität BielefeldBielefeldGermany
  2. 2.UMR INRA-CNRS 2594/441 Laboratoire des Interactions Plantes-MicroorganismesChemin de Borde RougeCastanet-Tolosan cedexFrance

Personalised recommendations