Magnetic Properties of Nanostructured Materials

Monte Carlo Simulation and Experimental Approach for Nanocrystalline Alloys and Core-Shell Nanoparticles
  • O. Crisan
  • J.-M. Greneche
  • Y. Labaye
  • L. Berger
  • A.D. Crisan
  • M. Angelakeris
  • J.M. LeBreton
  • N.K. Flevaris
Conference paper
Part of the NATO Science Series book series (NAII, volume 184)


The magnetic properties of FINEMET-type nanocrystalline alloys and isolated ferromagnetic AgCo nanoparticles are investigated both experimentally and numerically. Theoretical models of spins that simulate ideal nanocrystalline alloys and isolated nanoparticles are considered while their magnetic properties are derived from Monte Carlo simulation of low-temperature spin ordering. Interesting features such as magnetic polarization of the matrix due to penetrating fields arising from nanograins and the role played by the crystalline fraction in the overall magnetic behaviour, in the case of nanocrystalline alloys are investigated. For isolated nanoparticles it is shown that the competition between surface and bulk anisotropy gives rise to surface spin disorder that, together with finite-size effects, is responsible for the experimentally observed lack of saturation of the magnetization in high applied fields. These simulation results are confirmed by experimental data obtained on FINEMET nanocrystalline alloys and isolated ferromagnetic AgCo colloidal nanoparticles.


Magnetic Behaviour Exchange Coupling Amorphous Matrix Surface Anisotropy Finite Size Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yoshizawa, Y., Oguma, S., and Yamauchi, K., (1988) New Fe-based soft magnetic alloys composed ofultrafine grain structure, J. Appl. Phys. 64, 6044.Google Scholar
  2. 2.
    Herzer, G. (1997) in Handbook of Magnetic Materials, vol. 10, Buschow K. H. J. (ed.) Elsevier Science.Google Scholar
  3. 3.
    Crisan, O., LeBreton, J.M., Jianu, A., Teillet, J., and Filoti, G., (1997) Structural properties of amorphous and nanocrystallized Fe-Cu-Nb-Si-B and Fe-Gd-Cu-Nb-Si-B ribbons, J. Alloys and Comp. 262–263, 381.Google Scholar
  4. 4.
    Grenèche, J.-M., Miglierini, M., and Slawska-Waniewska, A., (2000) Iron-based nano-crystalline alloys investigated by 57Fe Mössbauer spectrometry, Hyp. Int. 126, 27.Google Scholar
  5. 5.
    Miglierini, M., and Grenèche, J.-M., (1999) Hyperfine fields of amorphous residual and interface phases in FeMCuB nanocrystalline alloys: a Missbauer effect study, Hyp. Int. 120/121, 297.Google Scholar
  6. 6.
    Miglierini, M., and Grenèche, J.-M., (1999) Temperature dependence of amorphous and interface phases in the Fe80Nb7Cu1B12 nanocrystalline alloy, Hyp. Int. 122, 121.Google Scholar
  7. 7.
    Skorvanek, J., Kovac, J., and Grenèche, J.-M., (2000) Structural and magnetic properties of the intergranular amorphous phase in FeNbB nanocrystalline alloys, J. Phys.: Condens. Matter 12, 9085.Google Scholar
  8. 8.
    Grenèche, J.-M., and Slawska-Waniewska, A., (2000) About the interfacial zone in nano-crystalline alloys, J. Magn. Magn. Mater. 215–216, 264.Google Scholar
  9. 9.
    Kodama, R.H., and Berkowitz, A.E., (1999) Atomic-scale magnetic modeling of oxide nanoparticles, Phys. Rev. B 59, 6321.Google Scholar
  10. 10.
    Kodama, R.H., Magnetic nanoparticles, (1999) J. Magn. Magn. Mater. 200, 359.Google Scholar
  11. 11.
    Kachkachi, H., Noguds, M., Tronc, E., and Garanin, D.A., (2000) Finite-size versus surface effects in nanoparticles, J. Magn. Magn. Mater. 221, 158.Google Scholar
  12. 12.
    Kachkachi, H., Ezzir, A., Noguès, M., and Tronc, E., (2000) Surface effects in nanoparticles: application to maghemite γ-Fe2O3, Eur. Phys. J. B 14, 681.Google Scholar
  13. 13.
    Hernando, A. and Kulik, T., (1994) Exchange interactions through amorphous paramagnetic layers in ferromagnetic naocrystals, Phys. Rev. B 49, 7064.Google Scholar
  14. 14.
    Suzuki, I., and Cadogan, J.M., (1998) Random magnetocrystalline anisotropy in two-phase nanocrystalline systems, Phys. Rev. B 58, 2730.Google Scholar
  15. 15.
    Garitaonandia, J.S., Schmool, D.S., and Barandiaran, J.M., (1998) Model of exchange-field penetration in nanocrystalline Fe87Zr6B6Cu alloys from magnetic and Missbauer studies, Phys. Rev. B 58, 12147.Google Scholar
  16. 16.
    Zitoun, D., Respaud, M., Fromen, M.C., Casanove, M.J., Lecante, P., Amiens, C., and Chaudret, B., (2002) Magnetic Enhancement in Nanoscale CoRh Particles, Phys. Rev. Lett. 89, 037203–1.Google Scholar
  17. 17.
    Kronmüller, H., Fischer, R., Hertel, R., and Leineweber, T., (1997) Micromagnetism and the microstructure in nanocrystalline materials, J. Magn. Magn. Mater. 175, 177.Google Scholar
  18. 18.
    Kronmüller, H., Fischer, R., Bachmann, M., Leineweber, T., (1999) Magnetization processes in small particles and nanocrystalline materials, J. Magn. Magn. Mater. 203, 12.Google Scholar
  19. 19.
    Fruchart, O., Nozieres, J.-P., Kevorkian, B., Toussaint, J.-C., Givord, D., Rousseaux, F., Decanini, D., and Carcenac, F., (1998) High coercivity in ultrathin epitaxial micrometer-sized particles with in-plane magnetization: Experiment and numerical simulation, Phys. Rev. B 57, 2596.Google Scholar
  20. 20.
    Hernando, A., (1999) Magnetic properties and spin disorder in nanocrystalline materials, J. Phys.: Condens. Matter 11, 9455.Google Scholar
  21. 21.
    Hernando, A., and González, A., (2001) Magnetic coupling and spin disorder in Co and Fe nanocrystalline ferromagnets, J. Non-Cryst. Sol. 287, 256.Google Scholar
  22. 22.
    González, A., and Hernando, A., (2002) Interface exchange coupling in a system of Co nanocrystals highly diluted in an amorphous matrix: Thermal dependence of coercivity Phys. Rev. B 65, 094432.Google Scholar
  23. 23.
    Slawska-Waniewska, A., and Grenèche, J.M., (1997) Magnetic interfaces in Fe-based nanocrystalline alloys determined by Missbauer spectrometry, Phys. Rev. B 56, R8491.Google Scholar
  24. 24.
    Hernando, A., Navarro, I., and Gorria, P., (1995) Iron exchange-field penetration into the amorphous interphase of nanocrystalline materials, Phys. Rev. B 51, 3281.Google Scholar
  25. 25.
    Murray, C.B., Kagan, C.R., and Bawendi, M.G., (1995) Self-Organization of CdSe Nano-crystallites into Three-Dimensional Quantum Dot Superlattices, Science 270, 1335.Google Scholar
  26. 26.
    Chatterjee, J., Haik, Y., and Chen, C.J., (2002) Polyethylene magnetic nanoparticle: a new magnetic material for biomedical applications, J. Magn. Magn. Mater. 246, 382.Google Scholar
  27. 27.
    Sun, S., Murray, C.B., Weller, D., Folks, L., and Moser, A., (2000) Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science 287, 1989.Google Scholar
  28. 28.
    Sun, S., and Murray, C.B., (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices, J. Appl. Phys. 85, 4325.Google Scholar
  29. 29.
    Durr, H.A., Dhesi, S.S., Dudzik, E., Knabben, D., van der Laan, G., Goedkoop, J.B., Hillebrecht F.U., (1999) Spin and orbital magnetization in self-assembled Co clusters on Au(111), Phys. Rev. B 59, 701.Google Scholar
  30. 30.
    Bodker, F., Morup, S., and Linderoth, S., (1994) Surface effects in metallic iron nanoparticles, Phys. Rev. Lett. 72, 282.Google Scholar
  31. 31.
    Kuncser, V., Keune, W., Sahoo, B., Duman, E., Acet, M., Radu, F., Valeanu, M., Crisan, O., and Filoti, G., (2003) Magnetic interactions and spin configuration in FeRh and Fe/FeRh systems, Proceedings of ICM Rome, Italy, to appear in J. Magn. Magn. Mater.Google Scholar
  32. 32.
    Nogués, J. and Schuller I. K., (1999) J. Magn. Magn. Mater. 192, 203–232.Google Scholar
  33. 33.
    Kodama, R.H., Berkowitz, A.E., McNiff, E.J. Jr., and Foner, S., (1996) Surface Spin Disorder in NiFe2O4 Nanoparticles, Phys. Rev. Lett. 77, 394.Google Scholar
  34. 34.
    Kodama, R.H., Makhlouf, S.A., and Berkowitz, A.E., (1997) Finite Size Effects in Anti-ferromagnetic NiO Nanoparticles, Phys. Rev. Lett. 79, 1393.Google Scholar
  35. 35.
    Bakuzis, A.F., Morais, P.C., and Pelegrini, F., (1999) Surface and exchange anisotropy fields in MnFe2O4 nanoparticles: Size and temperature effects, J. Appl. Phys. 85, 7480.Google Scholar
  36. 36.
    Iglesias, O., and Labarta, A., (2001) Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations, Phys. Rev. B 63, 184416.Google Scholar
  37. 37.
    Respaud, M., Broto, J.M., Rakoto, H., Fert, A.R., Thomas, L., Barbara, B., Verelst, M., Snoeck, E., Lecante, P., Mosset, A., Osuna, J., Ely, T.O., Amiens, C., and Chaudret, B., (1998) Surface effects on the magnetic properties of ultrafine cobalt particles, Phys. Rev. B 57, 2925.Google Scholar
  38. 38.
    Crisan, O., LeBreton, J. M., and Filoti, G., (2003) Nanocrystallization of soft magnetic FINEMET-type amorphous ribbons, Sensors & Actuators A. 160, 240–245.Google Scholar
  39. 39.
    Crisan, A.D., LeBreton, J.M., Crisan, O., and Filoti, G., (2003) Metastable phases and crystallization products in nanocrystalline FINEMET-type alloys with RE addition, J. Optoelectron. Adv. Mater. 5(3), 663.Google Scholar
  40. 40.
    Herzer, G., (1989) Grain structure and magnetism of nanocrystalline ferromagnets, IEEE Trans. Magn. 25, 3327.Google Scholar
  41. 41.
    Slawska-Waniewska, A., Gutowski, M., Lachowicz, H.K., Kulik, T., Matyja, H., (1992) Superparamagnetism in a nanocrystalline Fe-based metallic glass, Phys. Rev. B 46, 14594.Google Scholar
  42. 42.
    Crisan, O., Grenèche, J.-M., LeBreton, J.M., Crisan, A.D., Labaye, Y., Berger, L., and Filoti, G., (2003) Magnetism of nanocrystalline FINEMET alloy: experiment and simulation, Eur. Phys. J. B 34, 155–162.Google Scholar
  43. 43.
    Labaye, Y., Crisan, O., Berger, L., Grenèche, J.M., and Coey, J.M.D., (2002) Surface anisotropy in ferromagnetic nanoparticles, J. Appl. Phys. 91, 8715.Google Scholar
  44. 44.
    Sobal, N.S., Hilgendorff, M., Mohwald, H., Giersig, M., Spasova, M., Radetic, T., and Farle, M., (2002) Synthesis and Structure of Colloidal Bimetallic Nanocrystals: The Non-Alloying System Ag/Co, Nano Letters 2, 621.Google Scholar
  45. 45.
    Crisan, O., Angelakeris, M., Flevaris, N.K., Sobal, N., and Giersig, M., (2003) Anisotropies in ferromagnetic nanoparticles: simulation and experimental approach, Sensors & Actuators A 106, 130–133.Google Scholar
  46. 46.
    Crisan, O., Angelakeris, M., Nogues, M., Papaioannou, E., Flevaris, N.K., Komninou, Ph., Kehagias, Th., Sobal, N., and Giersig, M., (2003) Correlation of structure and magnetism of AgCo nanoparticle arrays, Proceedings of ICM 2003, Rome, Italy, to appear in J. Magn. Magn. Mater.Google Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • O. Crisan
    • 1
    • 2
  • J.-M. Greneche
    • 3
  • Y. Labaye
    • 3
  • L. Berger
    • 3
  • A.D. Crisan
    • 2
  • M. Angelakeris
    • 2
  • J.M. LeBreton
    • 4
  • N.K. Flevaris
    • 2
  1. 1.National Institute for Materials PhysicsBucharestRomania
  2. 2.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  3. 3.LPEC, UMR 6087 CNRSUniversité du MaineLe MansFrance
  4. 4.GPM, UMR 6634 CNRSUniversité de RouenSt. Etienne du RouvrayFrance

Personalised recommendations