Combinatorial Physics, Normal Order and Model Feynman Graphs

  • A. I. Solomon
  • P. Blasiak
  • G. Duchamp
  • A. Horzela
  • K.A. Penson
Conference paper

DOI: 10.1007/1-4020-2634-X_25

Cite this paper as:
Solomon A.I., Blasiak P., Duchamp G., Horzela A., Penson K. (2004) Combinatorial Physics, Normal Order and Model Feynman Graphs. In: Gruber B.J., Marmo G., Yoshinaga N. (eds) Symmetries in Science XI. Springer, Dordrecht

Abstract

The general normal ordering problem for boson strings is a combinatorial problem. In this talk we restrict ourselves to single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, such as Bell and Stirling numbers. We explicitly give the generating functions for some classes of these numbers. Finally we show that a graphical representation of these combinatorial numbers leads to sets of model field theories, for which the graphs may be interpreted as Feynman diagrams corresponding to the bosons of the theory. The generating functions are the generators of the classes of Feynman diagrams.

Keywords

Combinatorics normal order Feynman diagrams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A. I. Solomon
    • 1
    • 2
  • P. Blasiak
    • 1
    • 3
  • G. Duchamp
    • 4
  • A. Horzela
    • 3
  • K.A. Penson
    • 1
  1. 1.Laboratoire de Physique Théorique des Liquides, CNRS UMR 7600Université Pierre et Marie CurieParis, Cedex 05France
  2. 2.Physics and Astronomy DepartmentThe Open UniversityMilton Keynes
  3. 3.Department of Theoretical PhysicsH. Niewodniczański Institute of Nuclear Physics, Polish Academy of SciencesKrakówPoland
  4. 4.LIFAR, Université de RouenMont-Saint Aignan CedexFrance

Personalised recommendations