Materials Interactions with Space Environment: International Space Station - May 2000 to May 2002

  • Steven L. Koontz
  • Michael Pedley
  • Ronald R. Mikatarian
  • John Golden
  • Paul Boeder
  • John Kern
  • Hagop Barsamian
  • Joseph I. Minow
  • Richard L. Altstatt
  • Mary J. Lorenz
  • Brian Mayeaux
  • John Alred
  • Carlos Soares
  • Erich Christiansen
  • Todd Schneider
  • Dave Edwards
Part of the Space Technology Proceedings book series (SPTP, volume 5)


The set of materials interactions with the space flight environment that have produced the largest impacts on the verification and acceptance of flight hardware and on flight operations of the International Space Station (ISS) Program during the May 2000 to May 2002 time frame are described in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported.


International Space Station Linear Energy Transfer Mean Time Between Failure Defense Meteorological Satellite Program Auroral Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    NASA Technical Memorandum 4527; Natural Orbital Environment Guidelines for Use in Processing, John Wiley and Sons Inc., New York, 1994Google Scholar
  2. 2.
    Handbook of Geophysics and the Space Environment; Jursa, Adolph S., Editor, Air Force Aerospace Vehicle Development; Anderson, Jeffery B., Editor; Smith, Robert E., Compiler; June 1994; and Lieberman, M. A., Lichtenberg, A. J.; Principles of Plasma Discharges and Materials Geophysics Laboratory, Air Force Systems Command, United States Air Force, 1985Google Scholar
  3. 3.
    Vette J. I., The AE-8 Trapped Electron Model Environment, NSSDC WDC-A-R&S 91-24, 1991Google Scholar
  4. 4.
    Abel, R., Thorne, R. M., and Vampola, A. L.; “Solar Cycle Behavior of Trapped Energetic Electrons in Earth’s Inner Radiation Belt,” J. Geophys. Res., 99, 19427, 1994CrossRefGoogle Scholar
  5. 5.
    Ogliore, R. C., Mewaldt, R. A., Leske, R. A., Stone, E. C., von Rosenvinge, T. T.; “A Direct Measurement of the Geomagnetic Cutoff for Cosmic Rays at Space Station Latitudes,” Proceedings of the ICRC 2001: 4112, Copernicus Gesellschaft 2001; and Xinlin, L., Baker, D. N., Kanekal, S. G., Looper, M., Temerin, M.; “Long Term Measurements of Radiaiton Belts by Sampex and their Variations,” Geophys. Res. Lett., accepted for publication Aug 15, 2001, American Geophysical UnionGoogle Scholar
  6. 6.
    Dyer, C. S., Truscott, P. R., Evans. H., Sims, A. J., Hammond, N., Comber, C.; “Secondary Radiation Environment in Heavy Space Vehicles and Instruments,” Adv. Space Res. Vol. 17, No. 2, pp. (2)53–(2)58, 1996 (1995 COSPAR)Google Scholar
  7. 7.
    Garrett, H. B., Whittlesey, A. C.; “Spacecraft Charging, An Update,” AIAA 96-0143, 34th AIAA Aerospace Sciences Meeting and Exhibit, 15–18, January 1996, Reno NevadaGoogle Scholar
  8. 8.
    Vaughn, J.A., Carruth, M. R., Katz, I., Mandell, M., Jongeward, G. A.; “Electrical Breakdown Currents on Large Spacecraft in Low Earth Orbit,” J. Spacecraft and Rockets, Vol. 31, No. 1, January-February 1994, pp 54–59Google Scholar
  9. 9.a)
    Snyder, David B.; “Dynamic Interactions Between Ionospheric Plasma and Spacecraft,” The Radio Science Bulletin, No. 274, Sept, 1995, pp 29–36, b) Ferguson, D. C., Hillard, G. B.; “In Space Measurement of Electron Current Collection by Space Station Solar Arrays,” AIAA 95-0486, 33rd Aerospace Sciences Meeting and Exhibit, January 9–12, 1995, Reno NV., c) de la Cruz, C. P., Hastings, D. E., Ferguson, D., Hillard, B.;” Data analysis and model comparison for solar Array Module Plasma Interactions Experiment,” J. Spacecraft and Rockets, Vol.. 33, No. 3, pp 438–446, May–June 1996, d) Hastings, D. E., Cho, M., Kuninaka, H., “The Arcing Rate for a High Voltage Solar Array,” Journal of spacecraft and Rockets, 29, No.4, 538–554, 1992, e) Hastings, D. E.; “A Review of Plasma Interactions with spacecraft in Low Earth Orbit,” Journal of Geophysical Research, 100, No. A8, PP. 14457–14484, 1995Google Scholar
  10. 10.
    Galofaro, J. T., Doreswaamy, C. V., Vayner, B. V., Snyder, D. B., Ferguson, D. C.; “Electrical Breakdown of anodized Structures in a Low Earth Orbit Environment,” NASA/TM-1999-209044, April, 1999Google Scholar
  11. 11.
    Vayner, B. V., Galofarno, J., Ferguson, D. C., de Groot, W., Thompson, C., Dennison, J. R., Davis, R.; “The Conductor-Dielectric Junctions in a Low Density Plasma,” NASA/TM-1999-209408, Nov. 1999Google Scholar
  12. 12.
    Murphy, G., Croley, D., Ratliff, M., Leung, P.; “The Role of External Circuit Impedance in Dielectric Breakdown,” AIAA 92-0821, 30th Aerospace Scoiences Meeting and Exhibit, Jan. 6–9, 1992/Reno, NVGoogle Scholar
  13. 13.
    Patterson, M. J., Verhey, T. R., Soulas, G., Zakany, J.; “Space Station Cathode Design Performance and Operating Specifications,” IEPC Paper Number 97–170, 25th International Electric Propulsion Conference, Cleveland Ohio, Aug. 1997.Google Scholar
  14. 14.
    Lambert, J. C., Chaky, R. C.; “The ISS Plasma Contactor,” AIAA 96-0627, 34th Aerospace Sciences Meeting, Jan. 15–18, 1996, Reno NV.Google Scholar
  15. 15.
    Ferguson, D. C., Morton, T. L., Hillard, B. G.; “First Results from the Floating Potential Probe (FPP) on International Space Station,” AIAA-2001-0402, 39th Aerospace Sciences Meeting and Exhibit, Jan. 2001, Reno, NevadaGoogle Scholar
  16. 16.
    Morton, Tl L., Minow, J. I.; “Floating Potential Langmuir Probe Data Reduction Results,” AIAA-2002-0936, 40th AIAA Aerospace Sciences Meeting and Exhibit, 14–17, January 2002, Reno NevadaGoogle Scholar
  17. 17.
    Bering, E. A., Koontz, S., Katz, I., Gardner, B., Evans, D., Ferguson, D.; “The Plasma Environment of the International Space Station in the Austral Summer Auroral Zone Inferred from Plasma Contactor Data,” AIAA 0220-0935, 40th AIAA Aerospace Sciences Meeting and Exhibit, 14–17, January 2002, Reno NevadaGoogle Scholar
  18. 18.
    Mikatarian, R.R., Kern, J.W., Barsamian, H.R. and Koontz, S.L., “Plasma Charging of the International Space Station”, to be presented at the COSPAR World Space Congress, Houston, Texas, October 2002Google Scholar
  19. 19.
    Katz, I., Lilley, J. R., Greb, A., McCoy, J. E., Galofaro, J., Ferguson, D. C.; “Plasma turbulence enhanced current collection: Results form the plasma motor generator electrodynamic tether flight,” J. Geohys. Res., Vol. 100, No. A2, pp1687–1690, Feb. 1, 1995Google Scholar
  20. 20.
    Stone, N. H.; “The Aerodynamics of Bodies in a Rarefied Ionized Gas with Applications to Spacecraft Environmental Dynamics,” NASA Technical Paper 1933, November 1981Google Scholar
  21. 21.
    Martin, A. R.; “Spacecraft/Plasma Interactions and Electromagnetic Effects in LEO and Polar Orbits,” Final Report for ESA/ESTEC Contract Number 7989/88/NL/PB(SC), Vol. 3, 1991Google Scholar
  22. 22.
    Personal Communication, William Spetch, Vehicle Integrated Performance Engineering (VIPeR) Office, Mail Code OM, NASA Johnson Space Center, Houston, Texas 77058Google Scholar
  23. 23.
    Minow, J. I., Neergaard, L. F., Maurits, S., Hwang, K., Suggs, R. M.; “High Latitude Plasma Electrodynamics and Spacecraft Charging in Low-Earth Orbit,” ESA/SCTC, 23–27, April, 2001Google Scholar
  24. 24.
    Purvis, C. K., Snyder, D. B., Jongeward, G. A.; “Auroral Interactions with ISSA,” NASA Technical Memorandum 106794, December 1994Google Scholar
  25. 25.
    Cooke, D. L.; “Simulation of an Auroral Charging Anomaly on the DMSP Satellite,” 6th Spacecraft Charging Technology Conference, AFRL-VS-TR-20001578, 1 Sept., 2000Google Scholar
  26. 26.
    Gussenhoven M. S., Hardy, D. A., Rich, F., Burke, W. J.; Yeh, H-C.; “High-Level Spacecraft Charging in the Low-Altitude Polar Auroral Environment,” Journal of Geophysical Research, Vol. 90, NO. A11, 11,009-11-023, November 1985Google Scholar
  27. 27.
    Wahlund, J-E., Wedin, L. J., Carrozi, T., Eriksson, A. I., Holback, B. Anderson, L., Laakso, H.; “Analysis of Freja Charging Events: Statistical Occurrence of Charging Events,” WP-130 Technical Note (SPEE-WP130-TN), Version 2.0, ESA contract 11974/96/NL/JG(SC), 22 February, 1999Google Scholar
  28. 28.
    Stevens, N. J., Jones, M. R.; “Comparison of Auroral Charging Predictions to DMSP Data,” AIAA 95-0370, 33rd Aerospace Sciences Meeting and Exhibit, January 9–12, 1995, Reno NV.Google Scholar
  29. 29.
  30. 30.
    NASA Johnson Space Center (JSC) Image Science and Analysis Group (ISAG), ISS Surface Damage and Discoloration, August 2001Google Scholar
  31. 31.
    J. Hyde and E. Christiansen, Meteoroid and Orbital Debris Impact Analysis of Returned International Space Station Hardware, NASA report JSC-29456, May 2001Google Scholar
  32. 32.
    NASA Johnson Space Center (JSC) Image Science and Analysis Group (ISAG), MMOD strike on Service Module Window 7, http://sn-isag/stationweb/html/prog_support/sm_win7_strike/sm_win7_strike.shtml
  33. 33.
    D. Lear and E. Christiansen, ISS Debris Risk Assessment Process, Orbital Debris Quarterly Newsletter, Vol.4, Issue 1, Jan.1999.
  34. 34.
    D.J. Kessler, et al., A Computer Based Orbital Debris Environment Model for Spacecraft Design and Observations in Low Earth Orbit, NASA TM-104825, 1996Google Scholar
  35. 35.
    J.-C. Liou, et al., The New NASA Orbital Debris Engineering Model ORDEM2000, NASA TP, October 2001 (release pending)Google Scholar
  36. 36.
    Boeder, P.; “Space Station Ionizing Radiation Design Environment,” SSP-30512, Rev C. June 3, 1994. Space Station Program Office, Johnson Space Flight Center, Houston, TexasGoogle Scholar
  37. 37.
    Baranov D. G., Dergatchov, V. A., Gargarin, Yu. F., Mottl, D. A., Nymmik, R. A.; “About the energy spectra of solar energetic particle events,” Proceedings of the ICRC 2001, 3181 Copernicus Gesellschaft 2001Google Scholar
  38. 38.
    Tylka, A. J., Cohen, C. M. S., Dietrich, W. F., Maclennan, C. G., McGuire, C. G., Ng, C. K., Reames, D. V.; “energy Spectra of Vety Large Gradual solar Particle Events,” Proceedings of ICRC 2001, 1 Copernicus Gesellschaft 2001Google Scholar
  39. 39.a)
    J. Feynman, G. Spitale and J. Wang, “Interplanetary Proton Fluence Model: JPL 1991”, I. Geophys Res., 98, No. A8, 13281, 1993, b) Tylka, A. J., Boberg, P. R., Adams, J. H. Jr., Beahm, L. P., Dietrich, W. F., Kleis, T,; “The Mean Ionic charge State of soalr energetic Fe Ions Above 200 MeV/nucleon, “Astrophys. J. Lett. Vol. 444, pp. 109–113, 1995Google Scholar
  40. 40.a)
    ISS MER Work Instruction — Solar Particle Event Notification, OB-MER-001 Basic, November, 2001, b) Mission Operations Directorate Flight Rule 5191, April 2002Google Scholar
  41. 41.
    Semones, E., Johnson, S., Weyland, M., Golightly, M.; “Recent Results of Passive Monitoring on International Space Station,” 6th Workshop on Radiation Monitoring of the International Space Station, 12–14 September, 2001, Jesus College, Oxford EnglandGoogle Scholar
  42. 42.
    Yasuda, H., Komiyama, T., Badhwar, G. D., Fugitaka, K.; “Organ/Tissue Dose Measured with Solid-State Integrating Dosemeters in a Low-Earth-Orbit Space Mission,” paper T-4-2, P-1a-40, 10th Congress of the IRPA, 14–19 May 2000, Hiroshima, JapanGoogle Scholar
  43. 43.
    Badhwar, G. D., “Shuttle Radiation Dose Measurements in the International Space Station Orbit,” Radiation Research, Vol. 157, No. 1, pp 69–75, January 2002Google Scholar
  44. 44.
    Vana N., Schoner W., Noll M., Fugger M., Akatov, Y., Shurshakov V.; “Determination of the Absorbed Dose and the Average LET of Space Radiation in Dependence of Shielding Conditions,” Radiat. Prot. Dosim. 85 (1–4) 291–294, 1999Google Scholar
  45. 45.
    Tylka, A. J., Adams, J. H., Jr., Boberg, P. R., Brownstein, B. Dietrich, W. F., Flueckiger, E. O., Petersen, E. L., Shea, M. A., Smart, D. F., Smith, E. C.; “CREME96: A Revision of the Cosmic Ray Effects on Microelectronics Code,” IEEE Transactions on Nuclear Science, Vol. 44, No. 6, December, 1997Google Scholar
  46. 46.
    O’Neill, P. M.; Orbiter Avionics Radiation Handbook: Orbiter and GFE Projects, JSC-23160 Rev. A, September 1999, NASA Johnson Space CenterGoogle Scholar
  47. 47.
    Domingo, C., Font, J., Baixeras, C., Font, Ll., Fernandez, F.; “Usage of a corrected Bethe-Bloch formula for charge identification of fast ions with Z ≥ 30 in polycarbonate track detectors,” Nucl. Instr. and Meth. B 146, pp 114–119, 1998Google Scholar
  48. 48.
    Groom, D. E., The European Physical Journal, C15 (2000) 1, Chapters 6 & 23Google Scholar
  49. 49.
    Dementyev, A. V., Nymmik, R. A., Sobolevsky, N. M.; Nucleon Spectra Behind 1–100 g/cm2 Aluminum Shielding under Galactic and Solar Cosmic Rays Irradiation, Preprint n 95-28/392. SINP MSU 1995Google Scholar
  50. 50., Shinn, J. L., Cucinotta, F. A., Wilson, J. W., Badhwar, G. D., O’Neill, P. M., Badavi, F. F.; “Effects of Target Fragmentation on Evaluation of LET spectra form space Radiation in Low-Earth-Orbit (LEO) Environment: Impact on SEU Predictions,” 32nd Annual International Nuclear and Space Radiation Effects Conference, Madison Wisconsin, 17–21 July 1995
  51. 51.
  52. 52.
    Groom, D. E., The European Physical Journal, C15 (2000) 1, Chapter 20Google Scholar
  53. 53.
    Atwell, W.; “ISS Radiation Monitoring: PTE Shielding Distributions, Calculations & Measurements,” 6th Workshop on Radiation Monitoring of the International Space Station, 12–14 September, 2001, Jesus College, Oxford EnglandGoogle Scholar
  54. 54.
    Seidleck, C. M., LaBel, K. A., Moran, A. K., Gates, M. M., Barth, J. M., Stassinopoulos Gruner, T. D.; “Singe Event Effect flight Data Analysis of Multilpe NASA Spacecraft and Experiments; Implications to Spacecraft Electrical Design,”
  55. 55.
    Personal communication, NASA/JSC/EA44/Truong, A. J.; “STS-95, 88, 96, and 93 Post Flight Analysis Report of Radiation Effectson General Purpose Computer (GPC) Memory Devices.,” EA44-99-022, Oct. 25, 1999Google Scholar
  56. 56.
    Klausman, A. L.; Effects of Space Flight on Small Personal Computers, Masters Thesis, University of Houston at Clear Lake, December 1995Google Scholar
  57. 57.
    Truscott, P., Lei, F., Ferguson, C., Gurriaran, R., Neiminen, P., Daly, E., Apostolakis, J., Giani, S., Pia, M. G., Urban, L., Maire, M.; “Development of a Spacecraft Radiation Shielding and Effects Toolkit based on Geant4,” British crown copyright 2000/DERA, and
  58. 58.
    Berger, T., Hajek, M., Schoner, W., Vana, N., Noll, M, Ebner, R., Akatov, Y., Shurshakov, V., Arkhangelsky, V.; “Measurement of the Depth Distribution of Average LET and Absorber Dose Inside a Water-Filled Phantom on Board Space Station MIR,” Physica Medica, Vol. XVII, Supplement 1, 2000 pp 1–11Google Scholar
  59. 59. “Radiation hazards to Crews of Interplanetary Missions; 2 Issues of Concern to NASA”
  60. 60.
    Strategic Program Plan for Space Radiation Health Research, Approved by Arnauld E. Nicogossian, M.D., Associate Administrator, Office of Life and Microgravity Sciences and Applications, NASA Headquarters, October, 23, 1998Google Scholar
  61. 61.
    Singleterry, R. C., Badavi, F. F., Shinn,, J. L., Cucinotta, F. A., Badhwar, G. D., Clowdsley, M. S., Heinbockel, J. H., Wilson, J. W., Atwell, W., Beaugean, R., Kopp, J., Reitz, G.; “Estimation of neutron and other radiation exposure components in low earth orbit,’ Radiat. Meas. 2001 June; 33(3). Pp 355–360CrossRefGoogle Scholar
  62. 62.
    Kim, M-H. Y., Wilson, J., Thibeault, S., Nealy, J. E., Badavi, F. F., Kiefer, R. L.; “Perforamcne Study of Galactic Cosmic Ray Shield Materials,” NASA Technical Paper 3473, November, 1994Google Scholar
  63. 63.
    Doll, D., Van Hagen, T., Redler, K., Tooker, J., Baxter, A., Fikaini, M., Schneider, D., Spinos, F., Funk, W.; “Low to High Energy Beam Stops for ATP,”, and Maurer, R. H., Roth, D. R., Kinnison, J. D., Jordan, T. M., Hielbronn, L. H., Miller, J., Zeitlin, C. J.; “Neutron Production from Polyethylene and Common Spacecraft Materials,” IEEE Trans. Nucl. Sci., Vol. 48, No. 6, pp 2029–2033, Dec. 22001
  64. 64.
    Andronenko, M. N., Andronenko, L. N., Neubert, W., Seliverstov, D. M.; “Equilibrium, Isoscaling and Nuclear Isotope Thermometry Related to 1 GeV Proton Induced Nuclear Reactions,” arXiv:nucl-ex/0112014v1 27 dec. 2001Google Scholar
  65. 65.;;; Chapter 8 Accelerator Shielding and Radioactivation, Fermi National Laboratory
  66. 66.
    Barschall, H. H., Chadwick, M. B., Jones, D. T. L., Meulders, J. P., Schumacher, H., Young, P. G., Cox, L. J., Hale, G. M., Schrewe, U., Siebers, J. V., Caswell, R. S., DeLuca, P. M., Wambersie, A.; Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection, ICRU Report 63, Dec. 1999Google Scholar
  67. 67.
    Badhwar, G. D., Cucinotta, F. A.; “A Comparison of Depth Dependence of Dose and Linear Energy Transfer Spectra in Aluminum and Polyethylene,” Radiation Research, Vol. 153, pp1–8, 2000Google Scholar
  68. 68.
  69. 69.
    Thomas, D. J., Alvera, A. V.; “Bonner sphere spectrometers-a critical review,” Nucl. Inst. and Meth. in Phys. Res. A, Vol. 476, pp 12–20, 2002Google Scholar
  70. 70.
    Beaugean, R., Burmeister, S., Petersen, F., Reitz, G.; “Dosimetric Measurements on ISS during Quiet and Disturbed Periods,” 6th Workshop on Radiation Monitoring of the International Space Station, 12–14 September, 2001, Jesus College, Oxford EnglandGoogle Scholar
  71. 71.
    Armstrong, T. W., Colborn, B. L.; “Evaluation of Trapped Radiation Model Uncertainties for Spacecraft Design,” NASA/CR — 2000-210072, March 2000.Google Scholar
  72. 72.a)
    Townsend, J. A., Hansen, P. A., Dever,, J. A., de Groh, K. K., Banks, B. A., Wang, L., He C.; Hubble Space Telescope Metallized TeflonR FEP Thermal Blanket Control Materials: on-orbit degradation and post-retrieval analysis,” High Performance Polymers, Vol. 11, No.1 March 1999, b) Lilley, J.; Nuclear Physics, Principles and Applications, John Wiley and Sons, New York, 2001, pp. 139–137, figure 5.5, c) Katz, l., Penfold, A. S..; Reviews of Modern Physics, Vol. 24, page 28, 1952Google Scholar
  73. 73.
    Dever, J. A., de Groh, K. K., Banks, B. A., Townsend, J. A.; “Effects of Radiation and Thermal Cycling on Teflon FEP,” High Performance Polymers, Vol. 11, pp123–140, 1999CrossRefGoogle Scholar
  74. 74.
    Buehler, P., Zehnder, A., Desorger, L., Hajdas, W., Daly, E., Adams, L.; “Measurements of the Radiation Belts from Mir and STRV,”
  75. 75.
    Schoner, W., Hajek, M., Noll, M., Ebner, R., Vana, N., Fugger, M., Akatov, Y., Shurshakov, V., Arkhangelsky, V.; “Measurement of the Dose Depth and LET Distribution at the Surface and Inside of Space Station Mir,”
  76. 76.
    Mackay, G. F., Thomson, I., Ng, A., Sultan, N.; “Applications of MOSFET Dosimeters on MIR and BION Satellites,” IEEE Trans. Nucl. Sci., Vol. 47, pp 2048–2051, December 1997.Google Scholar
  77. 77.
    Trinks, H.: Experimental Investigation of the Exhaust Plume Flow Fields of Various Small Bipropellant and Monopropellant Thrusters. AIAA Paper 87-1607, June 1987.Google Scholar
  78. 78.
    Rebrov, S., et al: “Monitoring of Contamination Actions of Flames and Exhausts of Propulsion Systems and Power Plants on Elements of Long-Term Space Stations to Minimize These Actions — Final Report,” Contract No. 251-5208/95, Russian Space Agency — Keldysh Research Center, Moscow, 30 January 1998Google Scholar
  79. 79.
    Soares, C.E.; International Space Station Provisional Plume Contamination Model (Phase I Report), Boeing, SSCN 2208 Phase I Report Deliverable. Houston, Texas. — September 30, 1999Google Scholar
  80. 80.
    Koontz, S.; Melendez, O.; Zolensky, M.; and Soares, C.: SPIFEX Contamination Studies. NASA Johnson Space Center Report JSC-27399, May 1996Google Scholar
  81. 81.
    Rebrov, S., Gerasimov, Y.; “Investigation of the Contamination Properties of Bipropellant Thrusters,” AIAA 2001–2818, 35th AIAA Thermophysics Conference, June 11–14, 2001Google Scholar
  82. 82.
    Soares, C., Mikatarian, R., Barsamian, H., Rauer, S.; “International Space Station Bipropellant Plume Contamination Model,” AIAA 2002–3016, 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, June 24–17, 2002, St. Louis Mo.Google Scholar
  83. 83.
    Alred, J.W., Smith, L.N., Wang, K.C., Lumpkin F.E., Fitzgerald, S.M.; “Modeling of Space Shuttle Orbiter Waste Water Dumps,” AIAA Paper 98–2588, 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, NM, June 15–18, 1998.Google Scholar
  84. 84.
    SPHINX Impact Simulation Results, ref: Stellingwerf, Wingate; “Impact Modeling with Smooth Particle Hydrodynamics,” Int. J. Impact Engineering, Vol. 14, pp 707–718, 1993Google Scholar
  85. 85.
    http: Scholar
  86. 86.
    Thomas, D. and Peterson, C.E., “Space Station External Contamination Control Requirements,” SSP 30426, Revision D, NASA Johnson Space Center, Houston, Texas, 1994Google Scholar
  87. 87.
    Standard Test Method for Contamination Outgassing Characteristics of Spacecraft Materials, E-1559, American Society for Testing and Materials, West Conshohocken, Pennsylvania, 2000Google Scholar
  88. 88.
    Alred, J.; “Outgassing Modeling and Preliminary Results,” ISS External Contamination Technical Interchange Meeting, Houston Texas, May 3–7, 1999Google Scholar
  89. 89.
    Hakes, Charles, The NASAN Program for Spacecraft Contamination Analysis — A User’s Guide, NASA Johnson Space Center, Houston, Texas, 1997Google Scholar
  90. 90.
    LeBeau, G. J., Lumpkin, F. E.; “Application Highlights of the DSMC Analysis Code (DAC) Software for Simulating Rarefied Flows”, Comput. Methods Appl. Mech Engrg., 191 (2001), 595–609Google Scholar
  91. 91.
    Soares, C.E, Mikatarian, R., Scharf, R., Miles, E.; “International Space Station Flights 1A/R — 6A External Contamination Observations and Surface Assessment, International symposium on Optical Science and Technology, SPIE’s 47th Annual Meeting, July 7–11, 2002, Seattle WashingtonGoogle Scholar
  92. 92.
    SSP-30233, Rev. F, “Space Station Requirements for Materials and Processes,” NASA Johnson Space Center, Houston, Texas, 1998Google Scholar
  93. 93.
    Koontz, S. L., Leger, L. J., Visentine, J. T., Hunton, D. E., Cross, J. B., Hakes, C. L.; “EOIM-III Mass Spectrometry and Polymer Chemistry: STS-46, July–August 1992,” J. Spacecraft and Rockets, Vol. 32, No. 3, pp 483–495, May, June 1995.Google Scholar
  94. 94.
    Linton, R. C., Whitaker, A. F., Finckenor, M. M.; “Space Environment Durability of Beta cloth in LDEF Thermal Blankets,” LDEF Materials Results for Spacecraft Applications, NASA CP-3257, Oct. 1992Google Scholar
  95. 95.
    Koontz, S. L., Jacobs, S., Le, J.; “Beta Cloth Durability Assessment for Space Station Freedom Multi Layer Insulation Blanket Covers,” NASA-TM-104748, March, 1993Google Scholar
  96. 96.
    Banks, B. A., Snyder, A., Miller, S. K., Demko, Rikako; “Issues and Consequences of Atomic Oxygen Undercutting of Protected Polymers in Low Earth Orbit,” ICPMSE-6, 6th International Space Conference; Toronto, Canad, May 1–3, 2002, B-8Google Scholar
  97. 97.
    Koontz, S., King, G., Dunnett, A., Kirkendahl, T., Linton. R., Vaughn, J.; “Intelsat Solar Array Coupon Atomic Oxygen flight Experiment,” J. Spacecraft and Rockets, Vol. 31, No. 3, pp 475–481 May, June 1994Google Scholar

Copyright information

© Springer Science + Business Media,Inc. 2004

Authors and Affiliations

  • Steven L. Koontz
    • 1
    • 2
  • Michael Pedley
    • 2
  • Ronald R. Mikatarian
    • 3
  • John Golden
    • 3
  • Paul Boeder
    • 3
  • John Kern
    • 4
  • Hagop Barsamian
    • 3
  • Joseph I. Minow
    • 7
  • Richard L. Altstatt
    • 7
  • Mary J. Lorenz
    • 3
  • Brian Mayeaux
    • 2
  • John Alred
    • 3
  • Carlos Soares
    • 3
  • Erich Christiansen
    • 5
  • Todd Schneider
    • 6
  • Dave Edwards
    • 6
  1. 1.ISS Environments ManagerNASA Johnson Space CenterHouston
  2. 2.Structural Engineering DivisionNASA Johnson Space CenterHouston
  3. 3.The Boeing CompanyHouston
  4. 4.Dynacs Engineering Co. Inc.Houston
  5. 5.Solar System Exploration DivisionNASA Johnson Space CenterHouston
  6. 6.Engineering PhysicsNASA Marshall Space Flight CenterHuntsville
  7. 7.Jacobs Sverdrup, MSFC GroupMSFC/ED44Huntsville

Personalised recommendations