Advertisement

Lime-Induced Iron Chlorosis in Fruit Trees

  • Maribela Pestana
  • Eugénio Araújo Faria
  • Amarilis de Varennes
Chapter

Keywords

Sugar Beet Iron Deficiency Fruit Tree Iron Uptake Calcareous Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadía, A., F. Ambard-Bretteville, R. Remy and A. Trémoliéres (1988). Iron-deficiency in pea leaves: Effect on lipid composition and synthesis. Physiologia Plantarum 72: 713–717.Google Scholar
  2. Abadía, A., Y. Lemoine, A. Trémoliéres, F. Ambard-Bretteville and R. Remy (1989a). Iron deficiency in pea: effects on pigment, lipid and pigment-protein complex composition of thylakoids. Plant Physiology and Biochemistry 27: 679–687.Google Scholar
  3. Abadía, A., M. Sanz, J. de las Rivas and J. Abadía (1989b). Photosynthetic pigments and mineral composition of iron deficient pear leaves. Journal of Plant Nutrition 12: 827–838.Google Scholar
  4. Abadía, J. (1992). Leaf response to Fe deficiency: A review. Journal of Plant Nutrition 15: 1699–1713.Google Scholar
  5. Abadía, J. (1998). Absorcíon y transporte de hierro en plantas. Actas do VII Simpósio Nacional-III Ibérico sobre Nutrición Mineral de las Plantas: XIII–XXIV.Google Scholar
  6. Abadía, J. and A. Abadía (1993). Iron and pigments. In L. L. Barton and B. C. Hemming (eds.), Iron chelation in plants and soil microorganisms. Academic Press, Inc, San Diego, CA, USA, pp. 327–343.Google Scholar
  7. Abadía, J., F. Morales and A. Abadía (1999). Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant and Soil 215: 183–192.Google Scholar
  8. Abadía, J., J. N. Nishio, E. Monge, L. Montañés and L. Heras (1985). Mineral composition of peach affected by iron chlorosis. Journal of Plant Nutrition 8: 697–707.Google Scholar
  9. Abadía, J., M. Tagliavini, R. Grasa, R. Belkhodja, A. Abadía, M. Sanz, E. A. Faria, C. Tsipouridis and B. Marangoni (2000). Using the flower Fe concentration for estimating crop chlorosis status in fruit tree orchards. A summary report. Journal of Plant Nutrition 23: 2023–2033.Google Scholar
  10. Aktas, M. and F. Van Egmond (1979). Effect of nitrate nutrition on iron utilization by an-efficient and an-inefficient soybean cultivar. Plant and Soil 51: 257–274.CrossRefGoogle Scholar
  11. Alcńtara, E., F. J. Romera, M. Canete and M. de la Guardia (1994). Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of Experimental Botany 45: 1893–1898.Google Scholar
  12. Alcántara, E. and J. R. Romera (1990). Caracterizacion de patrones de melocotonero por su tolerancia a clorosis ferrica mediante cultivo en solucion nutritiva con bicarbonato. Fruticultura Professional 28: 2–6.Google Scholar
  13. Alhendawi, R. A., V. Römheld, E. A. Kirkby and H. Marschner (1997). Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum, and maize. Journal of Plant Nutrition 20: 1731–1753.Google Scholar
  14. Alva, A. K. (1992a). Micronutrients status of Florida soils under citrus production. Communications in Soil Science and Plant Analysis 23: 2493–2510.Google Scholar
  15. Alva, A. K. (1992b). Solubility and iron release characteristics of iron chelates and sludge products. Journal of Plant Nutrition 15: 1939–1954.Google Scholar
  16. Alva, A. K. and E. Q. Chen (1995). Effects of external copper concentrations on uptake of trace elements by citrus seedlings. Soil Science 159: 59–64.Google Scholar
  17. Alva, A. K. and T. A. Obreza (1998). By-product iron humate increases tree growth and fruit production of orange and grapefruit. HortScience 33: 71–74.Google Scholar
  18. Andaluz, S., A. F. López-Millán, M. L. Peleato, J. Abadía and A. Abadía (2000). Increases in phosphoenolpyruvate carboxylase: a key response of sugar beet roots to iron-deficient. Plant and Soil, in press.Google Scholar
  19. Andréu, J. S., J. Jordé and M. Juérez (1991). Reactions of Fe-EDTA and Fe-EDDHA applied to calcareous soils. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 57–62.Google Scholar
  20. Ao, T. Y., F. Fan, R. F. Korcak and M. Faust (1985). Iron reduction by apple roots. Journal of Plant Nutrition 8: 629–644.Google Scholar
  21. Awad, F., L. Kahl and R. Kluge (1995a). Environmental aspects of sewage sludge and evaluation of super absorbent hydrogel under Egyptian conditions. In J. Abadía (ed.), Iron nutrition in soils and plant. Kluwer Acadenic Publishers, Dordrecht, Netherlands, pp. 91–97.Google Scholar
  22. Awad, F., V. Römheld and H. Marschner (1995b). Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 99–104.Google Scholar
  23. Ayed, D. I. (1970). A study of iron in tomato roots by chelate treatments. Plant and Soil 32: 18–26.CrossRefGoogle Scholar
  24. Bagnaresi, P. and P. Pupillo (1995). Characterization of NADH-dependent Fe3+-chelate reductases of maize roots. Journal of Experimental Botany 46: 1497–1503.Google Scholar
  25. Bakker, M. R. and C. Nys (1999). Effect of liming on fine root cation exchange sites of oak. Journal of Plant Nutrition 22: 1567–1575.Google Scholar
  26. Bañuls, J., R. Ratajczak and U. Lüttge (1993). Characterization of a proton-translocation ATPase in a tonoplast-vesicle fraction from citrus. Plant Physiology 142: 319–324.Google Scholar
  27. Bar, Y. and U. Kafkafi (1992). Nitrate-induced iron-deficiency chlorosis in avocado (Persea americana Mill.) rootstocks and its prevention by chloride. Journal of Plant Nutrition 15: 1739–1746.CrossRefGoogle Scholar
  28. Bar-Akiva, A. (1964). Visual symptoms and chemical analysers vs. biochemical indicators as means of diagnosing iron and manganese deficiencies in citrus plants. Journal American Society of Horticultural Science 4: 9–25.Google Scholar
  29. Bar-Ness, E., Y. Chen, Y. Hadar, H. Marschner and V. Römheld (1991). Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant and Soil 130: 231–241.Google Scholar
  30. Bassi, D., M. Tagliavini, A. Rombolá and B. Marangoni (1998). Il programma di selezione di portinnesti per il pero serie ‘Fox’. Frutticoltura 4: 17–19.Google Scholar
  31. Bavaresco, L. (1997). Relationship between chlorosis occurrence and mineral composition of grapevine leaves and berries. Communications in Soil Science and Plant Analysis 28: 13–21.Google Scholar
  32. Bavaresco, L., E. Cantù and M. Trevisan (2000a). Chlorosis occurrence, natural arbuscular-mycorrhizal infection and stilbene root concentration of ungrafted grapevine rootstocks growing on calcareous soil. Journal of Plant Nutrition 23: 1685–1697.Google Scholar
  33. Bavaresco, L., R. Colla and C. Fogher (2000b). Different responses to root infection with endophytic microorganisms of Vitis vinifera L. cv. Pinot Blanc grown on calcareous soils. Journal of Plant Nutrition 23: 1107–1116.Google Scholar
  34. Bavaresco, L., P. Frashini and A. Perino (1993a). Effect of the rootstock on the occurrence of limeinduced chlorosis of potted Vitis vinifera L. cv. ‘Pinot blanc’. Plant and Soil 157: 305–311.CrossRefGoogle Scholar
  35. Bavaresco, L., M. Fregoni and C. Fogher (1995a). Effect of some biological methods to improve Feefficiency in grafted grapevine. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 83–89.Google Scholar
  36. Bavaresco, L., M. Fregoni and P. Frashini (1991). Investigations on iron uptake and reduction by excised roots of different grapevine rootstocks and a V. vinifera cultivar. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 139–143.Google Scholar
  37. Bavaresco, L., M. Fregoni and P. Frashini (1992). Investigations on some physiological parameter involved in chlorosis occurrence in grafted grapevine. Journal of Plant Nutrition 15: 1791–1807.Google Scholar
  38. Bavaresco, L., M. Fregoni and E. Gambi (1993b). In vitro method to screen grapevine genotypes for tolerance to lime-induced chlorosis. Vitis 32: 145–148.Google Scholar
  39. Bavaresco, L., M. Fregoni and A. Perino (1994). Physiological aspects of lime-induced chlorosis in some Vitis species. I. Pot trial on calcareous soil. Vitis 33: 123–126.Google Scholar
  40. Bavaresco, L., M. Fregoni and A. Perino (1995b). Physiological aspects of lime-induced chlorosis in some Vitis species. II. Genotype response to stress conditions. Vitis 34: 233–234.Google Scholar
  41. Bavaresco, L., E. Giachino and R. Colla (1999). Iron chlorosis paradox in grapevine. Journal of Plant Nutrition 22: 1589–1597.Google Scholar
  42. Beaufils, E. R. (1973). Diagnosis and recommendation integrated system (DRIS). Soil Sci Bulletin No. 1. University of Natal, South Africa, 132 pp.Google Scholar
  43. Belkhodja, R., F. Morales, A. Abadía, J. Gómez-Aparisi and J. Abadía (1994). Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology 104: 667–673.Google Scholar
  44. Belkhodja, R., F. Morales, R. Quílez, A. F. López-Millán, A. Abadía and J. Abadía (1998a). Iron deficiency causes changes in chlorophyll fluorescence due to the reduction in the dark of the photosystem II acceptor side. Photosynthesis Research 56: 265–276.CrossRefGoogle Scholar
  45. Belkhodja, R., F. Morales, M. Sanz, A. Abadía and J. Abadía (1998b). Iron deficiency in peach trees: effects on leaf chlorophyll and nutrient concentrations in flowers and leaves. Plant and Soil 203: 257–268.CrossRefGoogle Scholar
  46. Beverly, R. B., J. C. Stark, J. C. Ojala and T. W. Embleton (1984). Nutrient diagnosis of ‘Valencia’ oranges by DRIS. Journal American Society of Horticultural Science 109: 649–654.Google Scholar
  47. Bialczyk, J. and Z. Lechowski (1992). Absorption of HCO3 by roots and its effect on carbon metabolism of tomato. Journal of Plant Nutrition 15: 293–312.Google Scholar
  48. Bienfait, H. F., R. J. Bino, A. M. Van der Blick, J. F. Duivenvoorden and J. M. Fontaine (1983). Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiologia Plantarum 59: 196–202.Google Scholar
  49. Bienfait, H. F., W. Van den Briel and N. T. Mesland-Mul (1985). Free space iron pools in roots. Generation and mobilization. Plant Physiology 78: 596–600.Google Scholar
  50. Bouranis, D. L., S. N. Chorianopoulou, G. Zakynthinos, G. Sarlis and J. B. Drossopoulos (2001). Flower analysis for prognosis of nutritional dynamics of almond tree. Journal of Plant Nutrition 24: 705–716.Google Scholar
  51. Bouranis, D. L., C. K. Kitsaki, S. N. Chorianopoulou, G. Aivalakis and J. B. Drossopoulos (1999). Nutritional diagnosis of olive tree flowers. Journal of Plant Nutrition 22: 245–257.Google Scholar
  52. Brancadoro, L., G. Rabotti, A. Scienza and G. Zocchi (1995). Mechanisms of Fe-efficiency in roots of Vitis spp. in response to iron deficiency stress. Plant and Soil 171: 229–234.Google Scholar
  53. Briat, J. F., L. A. M., J. P. Laulhére, A. Lescure S. Lobréaux, H. Pesey, D. Proudhon and O. Wuytswinkel (1995). Molecular and cellular biology of plant ferritins. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 265–276.Google Scholar
  54. Brown, J. C. (1961). Iron chlorosis in plants. Advances in Agronomy 13: 329–369.CrossRefGoogle Scholar
  55. Brown, J. C. and V. D. Jolley (1989). Plant metabolic responses to iron-deficiency stress. Bioscience 39: 546–551.Google Scholar
  56. Brüggemann, W., K. Mass-Kantel and P. R. Moog (1993). Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric chelate reductase. Planta 190: 151–155.Google Scholar
  57. Brüggemann, W., P. R. Moog, H. Nakagawa, P. Janiesch and J. C. Kuiper (1990). Plasma membrane-bound NADH: Fe3+-EDTA reductase and iron deficiency in tomato (Lycopersicum esculentum L.). Is there a turbo reductase? Physiologia Plantarum 79: 339–346.Google Scholar
  58. Buckhout, T. J., P. F. Bell, D. G. Luster and R. L. Chaney (1989). Iron-stress induced redox activity in tomato (Lycopersicum esculentum Mill.) is localized on the plasma membrane. Plant Physiology 90: 151–156.Google Scholar
  59. Byrne, D. H., R. E. Rouse and Sudahono (1995). Tolerance to citrus rootstocks to lime-induced iron chlorosis. Subtropical Plant Science 47: 7–11.Google Scholar
  60. Chandra, L. (1966). Responses of rough lemon and trifoliata orange crown in calcareous and noncalcareous soils. Advancing frontiers of plant sciences 13: 187–193.Google Scholar
  61. Chaney, R. F., J. C. Brown and L. O. Tiffin (1972). Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology 50: 208–213.Google Scholar
  62. Chaney, R. L. (1984). Diagnostic practices to identify iron deficiency in higher plants. Journal of Plant Nutrition 7: 47–67.Google Scholar
  63. Chaney, R. L., P. F. Bell and B. A. Coulombe (1989). Screening strategies for improved nutrient uptake and use by plants. HortScience 24: 565–572.Google Scholar
  64. Chaney, R. L., Y. Chen, C. E. Green, M. J. Holden, P. F. Bell, D. G. Luster and J. S. Angle (1992). Root hairs on chlorotic tomatoes are an effect of chlorosis rather than part of adaptative Fe-stress-response. Journal of Plant Nutrition 15: 1857–1875.Google Scholar
  65. Chang, Y., J. F. Ma and H. Matsumoto (1998). Mechanisms of Al-induced iron chlorosis in wheat (Triticum aestivum). Al-inhibited biosynthesis and secretion of phytosiderophore. Physiologia Plantarum 102: 9–15.CrossRefGoogle Scholar
  66. Chen, Y. and P. Barak (1982). Iron nutrition of plants in calcareous soils. Advances in Agronomy 35: 217–240.CrossRefGoogle Scholar
  67. Cinelli, F. (1995). Physiological responses of clonal quince rootstocks to iron-deficiency induced by addition of bicarbonate to nutrient solution. Journal of Plant Nutrition 18: 77–89.Google Scholar
  68. Cinelli, F., R. Viti, D. H. Byrne and D. W. Reed (1995). Physiological characterization of two peach seedling rootstocks in bicarbonate nutrient solution. I. Root iron reduction and iron uptake. In J. Abadía (ed.), Iron nutrition in soils andplants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 323–328.Google Scholar
  69. Clark, R. B. and S. K. Zeto (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23: 867–902.Google Scholar
  70. Cress, W. A., G. V. Johnson and L. L. Barton (1986). The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. Journal of Plant Nutrition 9: 547–556.Google Scholar
  71. Cuesta, A., Sanchez-Andreu and M. Juarez (1993). Aplicacion foliar de quelatos de Fe en vid (Vitis vinifera) cv aledo. Efecto residual sobre los micronutrientes Fe, Zn y Mn. Agrochimica XXXVII: 4–5.Google Scholar
  72. de la Guardia, M. and E. Alcántara (1996). Ferric chelates reduction by sunflower (Helianthus annuus L.) leaves: influence of light, oxygen, iron-deficiency and leaf age. Journal of Experimental Botany 47: 669–675.Google Scholar
  73. de la Guardia, M. D., A. J. Felipe, E. Alcántara, J. M. Fournier and F. J. Romera (1995). Evaluation of experimental peach rootstocks grown in nutrient solutions for tolerance to iron stress. In J. Abadía (ed.), Iron nutrition in soils andplants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 201–205.Google Scholar
  74. Deckock, P. C, A. Hall and R. H. E. Inkson (1979). Active iron in plant leaves. Annals of Botany 43: 737–740.Google Scholar
  75. Dell’Orto, M., L. Brancadoro, A. Scienza and G. Zocchi (2000). Use of biochemical parameters to select grapevine genotypes resistant to iron-chlorosis. Journal of Plant Nutrition 23: 1767–1775.Google Scholar
  76. Démétriadrés, S. D., N. A. Gavalas and S. E. Papadopoulos (1964). Trials for the control of the lime-induced chlorosis in fruit trees in Greece. I. Preliminary observations on peach and lemon trees. Annual Institute Phytopathologie 7: 28–36.Google Scholar
  77. Drossopoulos, J. B., G. G. Kouchaji and D. L. Bouranis (1996). Seasonal dynamics of mineral nutrients by walnut tree reproductive organs. Journal of Plant Nutrition 19: 421–434.Google Scholar
  78. Drouineau, J. (1942). Dosage rapid du calcaire actif des sols. Annals Agronomy 1942: 441–450.Google Scholar
  79. Egilla, J. N., D. H. Byrne and D. W. Reed (1994). Iron stress response of three peach rootstock cultivars: ferric-iron reduction capacity. Journal of Plant Nutrition 17: 2079–2103.Google Scholar
  80. El-Kassa, S. E. (1984). Effect of iron nutrition on the growth, yield, fruit quality, and leaf composition of seeds balady lime trees grown on sandy calcareous soils. Journal of Plant Nutrition 7: 301–311.Google Scholar
  81. Fernández, J. L. (1995) La naranja, composición y cualidades de sus zumos y esencias. Generalitat Valenciana, Valencia, Spain.Google Scholar
  82. Fernandez-Lopez, J. A., L. Almela, M. S. Almansa and J. M. Lopez-Roca (1992). Partial purification and properties of chlorophyllase from chlorotic citrus limon leaves. Phytochemistry 31: 447–449.CrossRefGoogle Scholar
  83. Fernandez-Lopez, J. A., J. M. Lopez-Roca and L. Almela (1993). Mineral composition of iron chlorotic Citrus limon L. leaves. Journal of Plant Nutrition 16: 1395–1407.Google Scholar
  84. Fournier, J. M., E. Alcántara and M. D. De la Guardia (1992). Organic acid accumulation in roots of two sunflower lines with a different response to iron deficiency. Journal of Plant Nutrition 15: 1747–1755.Google Scholar
  85. Gahoonia, T. S., F. Asmar, H. Giese, G. Gissel-Nielsen and N. E. Nielsen (2000). Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments. European Journal of Agronomy 12: 281–289.CrossRefGoogle Scholar
  86. Garcia, A. L. and L. Galindo (1991). Chlorophyllase activity as biochemical indicator of Mn and Fe deficiencies in citrus. Photosynthetica 25(3): 351–357.Google Scholar
  87. Garcia, M., C. Daverede, P. Gallego and M. Toumi (1999). Effect of various potassium-calcium ratios on cation nutrition of grape grown hydroponically. Journal of Plant Nutrition 22(3): 417–425.CrossRefGoogle Scholar
  88. García, P., J. Abadía and A. Abadía (1998). Tratamientos foliares para la corrección de la clorosis férrica. Geórgia 6: 27–31.Google Scholar
  89. Gerke, J. (2000). Mathematical modelling of iron uptake by graminaceous species as affected by iron forms in soil and phytosiderophore efflux. Journal of Plant Nutrition 23: 1579–1587.Google Scholar
  90. Gerke, J., W. Romer and A. Jungk (1994). The excretion of citric and malic acid by proteoid roots of Lupinus albus L.; effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere in samples of an oxisol and a luvisol. Zeitscrift Pflanzenphysiologie Bodenk 157: 289–294.Google Scholar
  91. Gogorcena, Y., J. Abadía and A. Abadía (1998). Induccion in vivo de la reductasa de patrones frutales de Prunus persica L. Actas do VII Simposio Nacional-III Iberico sobre Nutricion mineral de las plantas: 27–32.Google Scholar
  92. Gogorcena, Y., J. Abadía and A. Abadía (2000). Induction of in vivo root ferric chelatereductase activity in the fruit tree rootstock. Journal of Plant Nutrition 23: 9–21.Google Scholar
  93. González-Vallejo, E. B., A. Abadía, A. Herbik, U. W. Stephan, R. Remy and J. Abadía (1998a). Determinación de patrones polipeptéticos de raiz de remolacha (Beta vulgaris L.) en condiciones de deficiencia de Fe. Actas do VII Simpósio Nacional-III Ibérico sobre Nutrición Mineral de las Plantas: 119–124.Google Scholar
  94. González-Vallejo, E. B., J. A. González-Reyes, A. Abadía, A. F. López-Millán, F. Yunta, J. J. Lucena and J. Abadía (1999). Reduction of ferric chelates by leaf plasma membrane preparations from Fe-deficient and Fe-sufficient sugar beet. Australian Journal of Plant Physiology 26: 601–611.CrossRefGoogle Scholar
  95. González-Vallejo, E. B., F. Morales, L. Cistué, A. Abadía and J. Abadía (2000). Iron deficiency decreases the Fe(III)-chelate reducing activity of leaf protoplasts. Plant Physiology 122: 337–344.Google Scholar
  96. González-Vallejo, E. B., S. Susín, A. Abadía and J. Abadía (1998b). Changes in sugar beet leaf plasma membrane Fe(III)-chelate reductase activities mediated by Fe-deficiency, assay buffer composition, anaerobiosis and the presence of flavins. Protoplasma 205: 163–168.Google Scholar
  97. Goss, M. J. (1991). Consequences of the effects of roots on soil. In D. Atkinson (ed.), Plant root growth. Blackwell Scientific Publications, Oxford, England, pp. 171–186.Google Scholar
  98. Grusak, M. A., L. V. Kochian and R. M. Welch (1993). Spatial and temporal development of iron(III) redutase activity in root systems of Pisum sativum (Fabaceae) challenged with iron-deficiency stress. American Journal of Botany 80: 300–308.Google Scholar
  99. Grusak, M. A., J. N. Pearson and E. Marentes (1999). The physiology of micronutrient homeostasis in field crops. Field Crops Research 60: 41–56.CrossRefGoogle Scholar
  100. Grusak, M. A. and S. Pezeshgi (1996). Shoot-to-root signal transmission regulates root Fe(III) reductase activity in the dgl mutant of pea. Plant Physiology 110: 329–334.Google Scholar
  101. Guller, L. and M. Krucká (1993). Ultrastructure of grape-vine (Vitis vinifera) chloroplasts under Mg-and Fe-deficiencies. Photosynthetica 29: 417–425.Google Scholar
  102. Guzmán, M. and L. Romero (1988). Iron index horticultural crops. I. Capsicum annuum L. cv. Lamyo. Journal of Plant Nutrition 11: 983–994.Google Scholar
  103. Guzmán, M., M. Urrestarazu and L. Romero (1991). Iron index horticultural. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 357–361.Google Scholar
  104. Hagstrom, G. R. (1984). Current management practices for correcting iron deficiency in plants with emphasis on soil management. Journal of Plant Nutrition 7: 23–46.Google Scholar
  105. Haleem, A. A., R. H. Loeppert and W. B. Anderson (1995). Role of soil carbonate and iron oxide in iron nutrition of soybean in calcareous soils of Egypt and the United States. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 307–314.Google Scholar
  106. Hamzé, M. and M. Nimah (1982). Iron content during lime-induced chlorosis with two citrus rootstocks. Journal of Plant Nutrition 5: 797–804.Google Scholar
  107. Hamzé, M., J. Ryan, R. Shwayri and M. Zaabout (1985). Iron treatment of lime-induced chlorosis: implications for chlorophyll, Fe3+, Fe2+ and K+ in leaves. Journal of Plant Nutrition 8: 437–448.Google Scholar
  108. Hamzé, M., L. Salsac and J. P. Wacquant (1980). Recherche de tests pour déceler précocement l’aptitude des agrumes résister á la chlorose calcaire: I. Capacité d’échange cationique et degré d’estérification des racines. Agrochimica XXIV: 432–442.Google Scholar
  109. Han, Z. H., T. Shen, R. F. Korcak and V. C. Baligar (1998). Iron absorption by iron-efficient and inefficient species of apples. Journal of Plant Nutrition 21: 181–190.Google Scholar
  110. Hartwig, R. C. and R. H. Loeppert (1993). Evaluation of soil iron. In L. L. Barton and B. C. Hemming (eds.), Iron chelation in plants and soil microorganisms. Academic Press, San Diego, CA, pp. 465–483.Google Scholar
  111. Hellín, E., J. A. Hernández-Cortés, A. Piqueras, E. Olmos and F. Sevilla (1995). The influence of the iron content on the superoxide dismutase activity and chloroplast ultrastructure of Citrus limon. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 247–254.Google Scholar
  112. Hellín, E., S. Llorente, V. Piquer and F. Sevilla (1983). Acitividad peroxidasa inducida como indicador de la efectividade de compuestos organicos de hierro en la correccion de la deficiencia de Fe en el limonero. Agrochimica XXVIII: 432–441.Google Scholar
  113. Hellín, E., R. Urena, F. Sevilla and S. Llorente (1984). Efectividad de complejos organicos de hierro en la correccion de la clorosis ferrica del limonero. Anales de Edafologia e Agrobiologia XLIII: 1195–1203.Google Scholar
  114. Heras, L., M. Sanz and L. Montañés (1976). Correción de la clorosis férrica en melocotonero y su repercusión sobre el contenido mineral, relcaiones nutritivas y rendimiento. Anales de la Estación Experimental de Aula Dei 13: 261–289.Google Scholar
  115. Hernández-Apaolaza, L., A. Gárate and J. J. Lucena (1995). Efficacy of commercial Fe(III)-EDDHA and Fe(III)-EDDHMA chelates to supply iron to sunflower and corn seedlings. Journal of Plant Nutrition 18: 1209–1223.Google Scholar
  116. Higuchi, K., K. Kanazawa, N. Nishizawa, M. Chino and S. Mori (1995). Purification and characterization of nicotianamine synthase from Fe-deficient barley roots. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 29–35.Google Scholar
  117. Hoffmann, B., R. Planker and K. Mengel (1992). Measurements of pH in the apoplast of sunflower leaves by means of fluorescence. Physiologia Plantarum 84: 146–153.CrossRefGoogle Scholar
  118. Holden, M. J., D. G. Luster, R. L. Chaney and T. J. Buckhout (1992). Enzimology of ferric chelate reduction at the root plasma membrane. Journal of Plant Nutrition 15: 1667–1678.Google Scholar
  119. Holden, M. J., D. G. Luster, R. L. Chaney, T. J. Buckhout and C. Robinson (1991). Fe3+-chelate reductase activity of plasma membranes isolated from tomato (Lycopersicum esculentum Mill.) roots. Comparison of enzymes from Fe-deficient and Fe-sufficient roots. Plant Physiology 97: 537–544.Google Scholar
  120. Horesh, I. and Y. Levy (1981). Response of iron-deficient citrus trees to foliar iron sprays with a low-surface-tension surfactant. Scientia Horticulturae 15: 227–233.CrossRefGoogle Scholar
  121. Horesh, I., Y. Levy and E. E. Goldschmidt (1986). Prevention of lime-induced chlorosis in citrus trees by peat and iron treatments to small soil volumes. HortScience 21: 1363–1364.Google Scholar
  122. Horesh, I., Y. Levy and E. E. Goldschmidt (1991). Correction of lime-induced chlorosis in containergrown citrus trees by peat and iron sulphate application to small soil volumes. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 345–349.Google Scholar
  123. Hughes, D. F., V. D. Jolley and J. C. Brown (1990). Differential response of dicotyledonous plants to potassium-deficiency stress: iron-stress response mechanism. Journal of Plant Nutrition 13: 1405–1417.Google Scholar
  124. Hughes, D. F., V. D. Jolley and J. C. Brown (1992). Roles for potassium in the iron-stress response mechanisms of strategy I and strategy II plants. Journal of Plant Nutrition 15: 1821–1839.Google Scholar
  125. Igartua, E., R. Grasa, M. Sanz, A. Abadía and J. Abadía (2000). Prognosis of iron chlorosis from the mineral composition of flowers in peach. Journal of Horticultural Science & Biotechnology 75: 111–118.Google Scholar
  126. Iglesias, I., R. Dalmau, X. Marcé, M. C. Del Campillo, V. Barrón and J. Torrent (2000). Fertilization with iron(II)-phosphate effectively prevents iron chlorosis in pear trees (Pyrus communis L.). Acta Horticulturae 511: 65–72.Google Scholar
  127. Jaegger, B., H. Goldbach and K. Sommer (2000). Release from lime induced iron chlorosis by cultan in fruit trees and its characterisation by analysis. Acta Horticulturae 531: 107–113.Google Scholar
  128. Ji, Z. H., R. F. Korcak and M. Faust (1985). Effect of Fe level and solution culture pH on severity of chlorosis and elemental content of apple seedlings. Journal of Plant Nutrition 8: 345–355.Google Scholar
  129. Jolley, V. D. and J. C. Brown (1994). Genetically controlled uptake and use of iron by plants. In J. A. Manthey, D. E. Crowley and D. G. Luster (eds.), Biochemistry of metal micronutrients in the rhizosphere. Lewis Publishers, London, UK, pp. 251–266.Google Scholar
  130. Jolley, V. D., D. J. Fairbanks, W. B. Stevens, R. E. Terry and J. H. Orf (1992). Root iron-reduction capacity for genotypic evaluation of iron efficiency in soybean. Journal of Plant Nutrition 15: 1679–1690.Google Scholar
  131. Jurkevitch, E., Y. Hadar and Y. Chen (1992). Utilization of the siderophores FOB and pseudobactin by rhyzosphere microorganisms of cotton plants. Journal of Plant Nutrition 15: 2183–2192.Google Scholar
  132. Kerley, S. J. (2000a). Changes in root morphology of white lupin (Lupinus albus L.) and its adaptation to soils with heterogeneous alkaline/acid profiles. Plant and Soil 218: 197–205.CrossRefGoogle Scholar
  133. Kerley, S. J. (2000b). The effect of soil liming on shoot development, root growth and cluster root activity of white lupin. Biological Fertilility of Soils 32: 94–101.Google Scholar
  134. Khorsandi, F. (1994). Sulfuric acid effects on iron and phosphorus availability in two calcareous soils. Journal of Plant Nutrition 17: 1611–1623.Google Scholar
  135. Kolesh, H., W. Hofner and K. Schaller (1987a). Effect of bicarbonate and phosphate on iron chlorosis of grape vines with special regard to the susceptibility of two rootstocks. Part II: pot experiments. Journal of Plant Nutrition 10: 231–249.Google Scholar
  136. Kolesh, H., W. Hofner and K. Schaller (1987b). Effect of bicarbonate and phosphate on iron-chlorosis of grape-vines with special regard to the susceptibility of the rootstocks. Part I. Field experiments. Journal of Plant Nutrition 10: 207–230.Google Scholar
  137. Kosegarten, H. and G. Englisch (1994). Effect of various nitrogen forms on pH in leaf apoplast and on Iron Chlorosis of Glycine max L. Zeitscrift Pflanzenphysiologie Bodenk 157: 401–405.Google Scholar
  138. Kosegarten, H., B. Hoffmann and K. Mengel (1999). Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiology 121: 1069–1079.CrossRefGoogle Scholar
  139. Kosegarten, H., U. Schwed, G. Wilson and K. Mengel (1998a). Comparative investigation on susceptibility of faba bean (Viciafaba L.) and sunflower (Helianthus annuus L.) to iron chlorosis. Journal of Plant Nutrition 21: 1511–1528.Google Scholar
  140. Kosegarten, H., G. Wilson and A. Esch (1998b). The effect of nitrate nutrition on iron chlorosis and leaf growth in sunflower (Helianthus annuus L.). European Journal of Agronomy 8: 283–292.CrossRefGoogle Scholar
  141. Köseoglu, A. T. (1995a). Effect of iron chlorosis on mineral composition of peach leaves. Journal of Plant Nutrition 18: 765–776.Google Scholar
  142. KÖseoglu, A. T. (1995b). Investigation of relationships between iron status of peach leaves and soil properties. Journal of Plant Nutrition 18: 1845–1859.Google Scholar
  143. Kramer, D., V. Römheld, E. Landsberg and H. Marschner (1980). Induction of transfer-cell formation by iron deficiency in the root epidermis of Helianthus annuus L. Planta 147: 335–339.CrossRefGoogle Scholar
  144. Krauskopf, K. B. (1983). Geoquimica de los micronutrientes. In J. J. Mortvedt, P. M. Giodano and W. L. Lindsay (eds.), Micronutrientes en agricultura. AGT Editor SA, Mexico, pp. 7–36.Google Scholar
  145. Krügger, C., O. Berkowitz, U. Stephan and R. Hell (2002). A metal-binding of the late embryogenesis abundant protein family transports iron in phloem of Ricinus communis L. Journal of Biological Chemistry, in press.Google Scholar
  146. Landsberg, E. (1984). Regulation of iron-stress-response by whole-plant activity. Journal of Plant Nutrition 7: 609–621.Google Scholar
  147. Landsberg, E. (1995). Transfer cell formation in sugar beet roots induced by latent Fe deficiency. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 67–75.Google Scholar
  148. Larbi, A., F. Morales, A. F. López-Millán, Y. Gogorcena, A. Abadia, P. R. Moog and J. Abadía (2001). Technical advance: Reduction of Fe(III)-chelates by mesophyll leaf disks of sugar beet. Multi-component origin and effects of Fe deficiency. Plant, Cell and Physiology 42: 94–105.Google Scholar
  149. Lavon, R. and E. E. Goldschmidt (1999). Enzymatic methods for detection of mineral deficiencies in citrus leaves: A mini-review. Journal of Plant Nutrition 22: 139–150.Google Scholar
  150. Legaz, F., M. D. Serna, E. Primo-Millo and B. Martin (1992). Leaf spray and soil application of Fe-chelates to Navelina orange trees. Proceedings of the International Society of Citriculture 2: 613–617.Google Scholar
  151. Li, C, X. Zhu and F. Zhang (2000). Role of shoot regulation of iron deficiency responses in cucumber and bean plants. Journal of Plant Nutrition 23: 1809–1818.Google Scholar
  152. Lindsay, W. L. (1991). Iron oxide solubilization by organic matter and its effect on iron availability. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 29–36.Google Scholar
  153. Lindsay, W. L. (1995). Chemical reactions in soils that affect availability to plants. A quantitative approach. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 7–14.Google Scholar
  154. Lindsay, W. L. and A. P. Schwab (1982). The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition 5: 821–840.Google Scholar
  155. Loeppert, R. H. (1986). Reactions of iron and carbonates in calcareous soils. Journal of Plant Nutrition 9: 195–214.Google Scholar
  156. Loeppert, R. H., S. C. Geiger, R. C. Hartwig and D. R. Morris (1988). A comparison of indigenous soil factors influencing the Fe-deficiency chlorosis of sorghum and soybean in calcareous soils. Journal of Plant Nutrition 11: 1481–1492.Google Scholar
  157. López-Cantarero, I., A. Sánchez, A. del Rio, J. L. Valenzuela and L. Romero (1992). What constitutes a good iron indicator with brackish water and gypsum. Journal of Plant Nutrition 15: 1567–1578.Google Scholar
  158. Lopéz-Millán, A. F., F. Morales, A. Abadía and J. Abadía (1998). Implicaciones metabolicas en la resposta bioquimicaala deficiencia de hierro en remolacha (Beta vulgaris L.). Actas do VII Simposio Nacional-III Iberico sobre Nutricion mineral de las plantas: 143–148.Google Scholar
  159. López-Millán, A. F., F. Morales, A. Abadía and J. Abadía (2000a). Effects of iron deficiency on the composition of the apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiology 124: 873–884.Google Scholar
  160. López-Millán, A. F., F. Morales, A. Abadía and J. Abadia (2001a). Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris) leaves. Physiologia Plantarum 112: 31–38.Google Scholar
  161. López-Millán, A. F., F. Morales, A. Abadía and J. Abadía (2001b). Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. Journal of Experimental Botany 52: 1489–1498.Google Scholar
  162. López-Millán, A. F., F. Morales, S. Andaluz, Y. Gogorcena, A. Abadía, J. de las Rivas and J. Abadía (2000b). Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiology 124.Google Scholar
  163. Loupassaki, M. H., S. M. Lionakis and I. I. Androulakis (1997). Iron deficiency in kiwi and its correction by different methods. Acta Horticulturae 444: 267–271.Google Scholar
  164. Lucena, J. J. (2000). Effects of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review. Journal of Plant Nutrition 23: 1591–1606.Google Scholar
  165. Lucena, J. J., J. Aberasturi and A. Gárate (1991). Stability of chelates in nutrient solutions for drip irrigation. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 63–67.Google Scholar
  166. Lucena, J. J., M. Manzanares and A. Gárate (1992a). Comparative study of the efficacy of commercial Fe chelates using a new test. Journal of Plant Nutrition 15: 1995–2006.Google Scholar
  167. Lucena, J. J., M. Manzanares and A. Gárate (1992b). A test to evaluate the efficacy of commercial Fe-chelates. Journal of Plant Nutrition 15: 1553–1566.Google Scholar
  168. Macur, R. E., R. A. Olsen and W. P. Inskeep (1991). Photochemical mobilization of ferritin iron. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interaction inplants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 89–94.Google Scholar
  169. Malavolta, E., S. A. Oliveira and G. C. Vitti (1993). The use of diagnosis recommendation integrated system (DRIS) to evaluate the nutritional status of healthy and blight affected citrus trees. In M. A. C. Fragoso and v. Buesichem (eds.), Optimization of plant nutrition. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 157–159.Google Scholar
  170. Manthey, J. A., D. L. McCoy and D. E. Crowley (1993). Chelation effects on the iron reduction and uptake by low-iron stress tolerant and non-tolerant citrus rootstocks. Journal of Plant Nutrition 16: 881–893.Google Scholar
  171. Manthey, J. A., D. L. McCoy and D. E. Crowley (1994). Stimulation of rhizosphere iron reduction and uptake in response to iron deficiency in citrus rootstocks. Plant Physiol. Biochem. 32: 211–215.Google Scholar
  172. Marschner, H. (1991). Symposium summary and future research areas. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic publishers, Dordrecht, Netherlands, pp. 365–372.Google Scholar
  173. Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, London, UK.Google Scholar
  174. Marschner, H. (1998). Role of the growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Research 56: 203–207.Google Scholar
  175. Marschner, H., V. Römheld and I. Cakmak (1987). Root-induced changes of nutrient availability in the rhizosphere. Journal of Plant Nutrition 10: 1175–1184.Google Scholar
  176. Marschner, H., V. Römheld and M. Kissel (1986). Different strategies in higher plants in mobilization and uptake of iron. Journal of Plant Nutrition 9: 693–713.Google Scholar
  177. Marschner, H., M. Treeby and V. Römheld (1988). Role of root-induced changes in the rhizosphere for iron acquisition in higher plants. Zeitscrift Pflanzenphysiologie Bodenk 152: 197–204.Google Scholar
  178. Masalha, J., H. Kosegarten, O. Elmaci and K. Mengel (2000). The central role of microbial activity for iron acquisition in maize and sunflower. Biological Fertilility of Soils 30: 433–439.Google Scholar
  179. McCray, J. M. and J. E. Matocha (1992). Effects of soil water levels on solution bicarbonate, chlorosis and growth of sorgum. Journal of Plant Nutrition 15: 1877–1890.Google Scholar
  180. McKenzie, D. B., L. R. Hossner and R. J. Newton (1984). Sorghum cultivar evaluation for iron chlorosis resistance by visual scores. Journal of Plant Nutrition 7: 677–685.Google Scholar
  181. Mengel, K. (1995). Iron availability in plant tissues — iron chlorosis on calcareous soils. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 389–397.Google Scholar
  182. Mengel, K., M. T. Breininger and W. Bubl (1984). Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil. Plant and Soil 81: 333–334.Google Scholar
  183. Mengel, K., R. Planker and B. Hoffmann (1994). Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus Annuus L.). Journal of Plant Nutrition 17: 1053–1065.Google Scholar
  184. Miller, G. W., I. J. Huang, G. W. Welkie and J. C. Pushnik (1995). Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 19–28.Google Scholar
  185. Miller, G. W., J. C. Pushnik and G. W. Welkie (1984). Iron chlorosis, a world wide problem, the relation of chlorophyll biosynthesis to iron. Journal of Plant Nutrition 7: 1–22.Google Scholar
  186. Miller, J. E., J. Swanepoel, D. Miller and S. F. Plessis (1994). Correction of lime-induced chlorosis of citrus in the Sundays river valley. Subtropica 15: 18–20.Google Scholar
  187. Mohamed, A. A., F. Agnolon, S. Cesco, Z. Varanini and R. Pinton (1998). Incidence of lime-induced chlorosis: plant response mechanisms and role of water soluble humic substances. Agrochimica XLII: 255–262.Google Scholar
  188. Monge, E., C. Pérez, A. Pequerul, P. Mandero and J. Val (1993). Effect of iron chlorosis on mineral nutrition and lipid composition of thylakoid biomembranes in Prunus persica (L.) Bastch. Plant and Soil 154: 97–102.CrossRefGoogle Scholar
  189. Montañés, L. and L. Heras (1991). Desviación de óptimo porcentual (DOP): Nuevo indice para la interpretación del análisis vegetal. Anales de la Estación Experimental de Aula Dei 20: 93–107.Google Scholar
  190. Montañés, L., L. Heras, J. Abadía and M. Sanz (1993). Plant analysis interpretation based on a new index: deviation from optimum percentage (DOP). Journal of Plant Nutrition 16: 1289–1308.Google Scholar
  191. Montañés, L., M. Sanz, V. Gomez, and L. Heras (1990a). Evolución de nutrientes en hoja de melocotonero (Prunus persica, L. Batsch.) y producción. Anales de la Estación Experimental de Aula Dei 20: 15–26.Google Scholar
  192. Montañés, L., M. Sanz, V. Gomez and L. Heras (1990b). Optimos nutricionales en melocotonero. Anales de la estación experimental de aula dei 20: 7–13.Google Scholar
  193. Moog, P. R. and W. Brüggemann (1994). Iron reductase systems on the plant plasma membrane — A review. Plant and Soil 165: 241–260.CrossRefGoogle Scholar
  194. Morales, F., A. Abadía and J. Abadía (1990). Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in Sugar beet (Beta vulgaris L.). Plant Physiology 94: 607–613.Google Scholar
  195. Morales, F., A. Abadía and J. Abadía (1991). Chlorophyll fluorescence and photon yield of oxygen evolution in iron deficient sugar-beet (Beta vulgaris) leaves. Plant Physiology 97: 886–893.Google Scholar
  196. Morales, F., A. Abadía and J. Abadía (1998a). Mecanismos de proteccion frente al exceso de luz en hojas deficientes en hierro. Actas do VII Simpósio Nacional-III Ibérico sobre Nutritión Mineral de las Plantas: 101–106.Google Scholar
  197. Morales, F., A. Abadia and J. Abadía (1998b). Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Australian Journal of Plant Physiology 25: 402–412.Google Scholar
  198. Morales, F., A. Abadía, R. Belkhodja and J. Abadía (1994). Iron deficiency-induced changes in the photosynthetic pigment composition on field-grown pear (Pyrus communis L.) leaves. Plant, Cell and Environment 17: 1153–1160.Google Scholar
  199. Morales, F., R. Belkhodja, A. Abadía and J. Abadía (2000a). Energy dissipation in the leaves of Fe-deficient pear trees grown in the field. Journal of Plant Nutrition 23: 1709–1716.Google Scholar
  200. Morales, F., R. Belkhodja, A. Abadia and J. Abadía (2000b). Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear tress (Pyrus communis L.). Photosynthesis Research 63: 9–21.CrossRefGoogle Scholar
  201. Morales, F., R. Grasa, A. Abadía and J. Abadía (1998c). Iron chlorosis paradox in fruit trees. Journal of Plant Nutrition 21: 815–825.CrossRefGoogle Scholar
  202. Morales, F., R. Grasa, Y. Gogorcena, A. Abadía and J. Abadía (2000c). Where is Fe located in iron-chlorotic peach leaves? In 10th International Symposium on Iron Nutrition and Interactions in Plants. Houston, Texas, USA, p. 99.Google Scholar
  203. Moreno, D. A., G. Pulgar, G. Villora and L. Romero (1998). Nutritional diagnosis of fig tree leaves. Journal of Plant Nutrition 21: 2579–2588.Google Scholar
  204. Moreno, J. J., J. J. Lucena and O. Carpena (1996). Effect of the iron supply on the nutrition of different citrus variety/rootstock combination using DRIS. Journal of Plant Nutrition 19: 689–704.Google Scholar
  205. Muleo, R., F. Cinelli and R. Viti (1995). Application of tissue culture on quince rootstock in iron-limiting conditions. Journal of Plant Nutrition 18: 91–103.Google Scholar
  206. Natt, C. (1992). Effect of slow release iron fertilizers on chlorosis in grape. Journal of Plant Nutrition 15: 1891–1912.Google Scholar
  207. Nedunchezhian, N., F. Morales, A. Abadía and J. Abadía (1997). Decline in photosynthetic electron transport activity and changes in thylakoid protein pattern in field grown iron deficient Peach (Prunus persica). Plant Science 129: 29–38.CrossRefGoogle Scholar
  208. Nenova, V. and I. Stoyanov (1995). Physiological and biochemical changes in young maize plants under iron deficiency: 2. Catalase, peroxidase, and nitrate reductase activities in leaves. Journal of Plant Nutrition 18: 2081–2091.Google Scholar
  209. Nenova, V. and I. Stoyanov (1999). Physiological and biochemical changes in young maize plants under iron deficiency. 3. Concentration and distribution of some nutrient elements. Journal of Plant Nutrition 22: 565–578.Google Scholar
  210. Nikolic, M. and V. Römheld (1999). Mechanism of Fe uptake by the leaf symplast: Is the Fe inactivation in leaf a cause of Fe deficiency chlorosis. Plant and Soil 215: 229–237.CrossRefGoogle Scholar
  211. Nonomura, A. M., J. N. Nishio and A. A. Benson (1995). Stimulated growth and correction of Fe-deficiency with trunk-and foliar-applied methanol-soluble nutrient amendments. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 329–333.Google Scholar
  212. Obreza, T. A., A. K. Alva and D. V. Calvert (1993). Citrus fertilizer management on calcareous soils. Circular of Florida Cooperative Extension Service 1127: 9 p.Google Scholar
  213. Ohata, T., K. Kanazawa, S. Mihashi, N. Kishi-Nishizawa, F. Shinji, N. Shigeo, M. Chino and S. Mori (1993). Biosynthetic pathway of phytosiderophores in iron-deficient graminaceous plants. Development of an assay system for the detection of nicotianamina aminotransferase activity. Soil Science and Plant Nutrition 39(4): 745–749.Google Scholar
  214. Papastylianou, I. (1993). Timing and rate of iron chelate application to correct chlorosis of peanut. Journal of Plant Nutrition 16: 1193–1203.Google Scholar
  215. Pestana, M. (2000) Caracterização fisiológica e nutritiva da cloroseférrica em citrinos. — Avaliação dos mecanismos de resistência aos efeitos do HCO 3-. Thesis for PhD degree on Agronomy, Universidade do Algarve, Faro, Portugal.Google Scholar
  216. Pestana, M., P. J. Correia, M. G. Miguel, A. D. Varennes, J. Abadía and E. A. Faria (2002). Foliar treatments as a strategy to control iron chlorosis in orange trees. Acta Horticulturae, in press.Google Scholar
  217. Pestana, M., P. J. Correia, A. D. Varennes, J. Abadía and E. A. Faria (2001a). Effectiveness of different foliar applications to control iron chlorosis in orange trees grown on a calcareous soil. Journal of Plant Nutrition 24: 613–622.Google Scholar
  218. Pestana, M., P. J. Correia, A. D. Varennes, J. Abadía and E. A. Faria (2001b). The use of floral analysis to diagnose the nutritional status of oranges trees. Journal of Plant Nutrition 24: 1913–1923.Google Scholar
  219. Pestana, M., M. David, A. D. Varennes, J. Abadía and E. A. Faria (2001c). Responses of ‘Newhall’ orange trees to iron deficiency in hydroponics: effects on leaf chlorophyll, photosynthetic efficiency and root ferric chelate reductase activity. Journal of Plant Nutrition 24: 1609–1620.Google Scholar
  220. Pestana, M., D. A. Gonçalves, A. D. Varennes and E. A. Faria (1999). The recovery of citrus from iron chlorosis using different foliar applications. Effects on fruit quality. In D. Anaç and Martin-Prével (eds.), Improved crop quality by nutrient management. Kluwer Academic Publishers, Dordrecht, pp. 95–98.Google Scholar
  221. Procopiou, J. and A. Wallace (2000). A wild pear native to calcareous soils that has a possible application as a pear rootstock. Journal of Plant Nutrition 23: 1969–1972.Google Scholar
  222. Pushnik, J. C. and G. W. Miller (1989). Iron regulation of chloroplast photosynthetic function: mediation of PSI development. Journal of Plant Nutrition 12: 407–421.Google Scholar
  223. Pushnik, J. C, G. W. Miller and J. H. Manwaring (1984). The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis. Journal of Plant Nutrition 7: 733–758.Google Scholar
  224. Quílez, R., A. Abadía and J. Abadía (1992). Characteristics of thylacoids and photosystem II membrane preparations from iron deficient and iron sufficient sugar beet (Beta vulgaris L.). Journal of Plant Nutrition 15: 1809–1819.Google Scholar
  225. Rabotti, G. and G. Zocchi (1994). Plasma membrane-bound H+-ATPase and redutase activities in Fe-deficient cucumber roots. Physiologia Plantarum 90: 779–785.CrossRefGoogle Scholar
  226. Rashid, A., G. A. Couvillon and J. B. Joones (1990). Assessment of Fe status of peach rootstocks by techniques used to distinguish chlorotic and non-chlorotic leaves. Journal of Plant Nutrition 13: 285–307.Google Scholar
  227. Robinson, N. J., C. M. Procter, E. L. Connolly and M. L. Guerinot (1999). A ferric-chelate reductase for iron uptake from soils. Nature 397: 694–697.CrossRefGoogle Scholar
  228. Rombolá, A. D., W. Brüggemann, M. Tagliavini, B. Marangoni and P. R. Moog (2000). Iron source affects Fe reduction and re-greening of kiwifruit (Actinidea deliciosa) leaves. Journal of Plant Nutrition 23: 1751–1765.Google Scholar
  229. Rombola, A. D., W. Brüggemann, M. Tagliavini and P. R. Moog (1998a). Meccanismi biochimici di toleranza alla clorosi ferrica in actinidia (A. deliciosa). Actas do IV Giornate scientifiche SOI: 395–396.Google Scholar
  230. Rombolá, A. D., F. Mazzanti, G. Sorrenti, G. Perazzolo, M. Caravita, R. Raimondi and B. Marangoni (2001). Use of plant water extracts for the controls of Fe chlorosis in fruit trees: a preliminary report. In Book of Abstracts of International Symposiun on Foliar Nutrition of Perennial Fruit Plants. Merano, Italy, p. 81.Google Scholar
  231. Rombolá, A. D., M. Quartieri, B. Marangoni, M. Tagliavini, D. Scudellari and J. Abadía (1999). Strategie di cura della clorosi ferrica nella fruticoltura integrata. Frutticoltura 5: 59–64.Google Scholar
  232. Rombolá, A. D., M. Tagliavini, M. Quartieri, D. Malaguti, B. Marangoni and D. Scudellari (1998b). La clorosi ferrica delle colture arboree da frutto: aspetti general e strategie di cura. Notiziario tecnico CRPV 54: 35–50.Google Scholar
  233. Romera, F. J. and E. Alcántara (1994). Iron deficiency stress responses in cucumber (Cucumis sativus L.) roots. A possible role for Ethylene? Plant Physiology 105: 1133–1138.Google Scholar
  234. Romera, F. J., E. Alcántara and M. de la Guardia (1999). Ethylene production by Fe-deficient roots and its involvement in regulation of Fe-deficiency stress responses by strategy I plants. Annals of Botany 83: 51–55.CrossRefGoogle Scholar
  235. Romera, F. J., E. Alcántara and M. D. de la Guardia (1991a). Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. I. Effect of bicarbonate and phosphate. Plant and Soil 130: 121–125.Google Scholar
  236. Romera, F. J., E. Alcántara and M. D. de la Guardia (1991b). Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. I. Effect of bicarbonate and phosphate. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 145–149.Google Scholar
  237. Romera, F. J., E. Alcántara and M. D. de la Guardia (1991c). Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. II. Iron stress response mechanisms. In Y. Chen and Y. Hadar (eds.), Iron nutrition and interactions in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 151–155.Google Scholar
  238. Romera, F. J., E. Alcántara and M. D. de la Guardia (1992). Role of roots and shoots in the regulation of the Fe efficiency response in sunflower and cucumber. Physiologia Plantarum 85: 141–146.CrossRefGoogle Scholar
  239. Romera, F. J., R. M. Welch, W. A. Norvell and S. C. Schaefer (1996). Iron requirement for and effects of promoters and inhibitors of ethylene action on stimulation of Fe(III)-chelate reductase in roots of strategy I species. Biometas 9: 45–50.Google Scholar
  240. Romero, L. (1992). A new statistical approach for the interpretation of nutrient interrelationships. IV. Boron/iron. Journal of Plant Nutrition 15: 1541–1551.Google Scholar
  241. Römheld, V. (1987a). Different strategies for iron acquisition in higher plants. Physiologia Plantarum 70: 231–234.Google Scholar
  242. Römheld, V. (1987b). Existence of two different strategies for the acquisition of iron in higher plants. In G. Winkelmann, D. Van der Helm, J. B. Neilands, V. C. H. Verlag and F. R. G. Weinheim (eds.), Iron transport in microbes plants and animals. Kluwer Academic Publishers, New York, pp. 353–374.Google Scholar
  243. Römheld, V. (2000). The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. Journal of Plant Nutrition 23: 1629–1643.Google Scholar
  244. Römheld, V. and F. Awad (2000). Significance of root exsudates in acquisition of heavy metals from a contaminated calcareous soil by graminaceous species. Journal of Plant Nutrition 23: 1857–1866.Google Scholar
  245. Römheld, V. and D. Kramer (1983). Relationship between proton efflux and rhizodermal transfer cells induced by iron deficiency. Zeitscrift Pflanzenphysiologie Bodenk 113: 73–83.Google Scholar
  246. Römheld, V. and H. Marschner (1979). Fine regulation of iron uptake by the Fe-effficient plant Helianthus annuus. In J. I. Harley and R. S. Russel (eds.), The soil-root interface. Academic press, New York, pp. 406–417.Google Scholar
  247. Römheld, V. and H. Marschner (1981). Iron deficiency stress induced morphological and physiological changes in root tips of sunflower. Physiologia Plantarum 53: 354–360.Google Scholar
  248. Römheld, V. and H. Marschner (1986a). Evidence for a specific uptake system for iron phytosiderophores in root grasses. Plant Physiology 80: 175–180.Google Scholar
  249. Römheld, V. and H. Marschner (1986b). Mobilization of iron in the rhizosphere of different plant species. In B. Tinker and A. Lauchli (eds.), Advances in plant nutrition, Vol. 2. Praeger Publishers, pp. 155–204.Google Scholar
  250. Römheld, V. and H. Marschner (1990). Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant and Soil 123: 147–153.Google Scholar
  251. Römheld, V., C. Muller and H. Marschner (1984). Localization and capacity of proton pumps in roots of intact sunflower plants. Plant Physiology 76: 603–606.Google Scholar
  252. Rubinstein, B. and D. G. Luster (1993). Plasma membrane redox activity: components and role in plant processes. Annual Review of Plant Physiology and Plant Molecular Biology 44: 131–155.CrossRefGoogle Scholar
  253. Ruiz, J. M., M. Baghour and L. Romero (2000). Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition 23: 1777–1786.Google Scholar
  254. Ruiz, R. S., C. S. Stomayor and G. S. Lemus (1984). Correccion de la clorosis ferrica en nectarinos y efecto residual. Agricultura tecnica (Chile) 44: 305–309.Google Scholar
  255. Sahu, M. P., D. D. Sharma, G. L. Jain and H. G. Singh (1987). Effects of growth substances, sequestrene 138-Fe and sulphuric acid on iron chlorosis of garden peas (Pisum sativum L.). Journal of Horticultural Science 62: 391–394.Google Scholar
  256. Sanz, M. (1999). Evaluation of interpretation of DRIS system during growing season of the peach tree: comparison with DOP method. Communications in Soil Science and Plant Analysis 30: 1025–1036.Google Scholar
  257. Sanz, M., R. Belkhodja, M. Toselli, L. Montañés, A. Abadía, M. Tagliavini, B. Marangoni and J. Abadía (1997a). Floral analysis as a possible tool for prognosis of iron deficiency in peach. Acta Horticulturae 448: 241–245.Google Scholar
  258. Sanz, M., M. Carrera and L. Montañés (1993). El estado nutricional del peral. Possibilidad del diagnóstico floral. Hortofruticultura 10: 60–62.Google Scholar
  259. Sanz, M., L. Heras and L. Montañés (1991). Foliar diagnosis in peach tree: reference nutrient contents throughout the season. Anales de la estación experimental de aula dei 20: 3–4.Google Scholar
  260. Sanz, M., L. Heras and L. Montañés (1992). Relationships between yield and leaf nutrient contents in peach trees: early nutritional status diagnosis. Journal of Plant Nutrition 15: 1457–1466.Google Scholar
  261. Sanz, M. and L. Montañés (1995a). Floral analysis: A novel approach for the prognosis of iron deficiency in pear (Pyrus communis L.) and peach (Prunus persica L. Batsch.). In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 371–374.Google Scholar
  262. Sanz, M. and L. Montañés (1995b). Flower analysis as a new approach to diagnosing the nutritional status of the peach tree. Journal of Plant Nutrition 18: 1667–1675.Google Scholar
  263. Sanz, M. and L. Montañés (1997). Diagnóstico visual de la clorosis férrica. Información técnica económica agrária 93: 7–22.Google Scholar
  264. Sanz, M., L. Montañés and M. Carrera (1994). The possibility of using analysis to diagnose the nutritional status of pear trees. Acta Horticulturae 367: 290–295.Google Scholar
  265. Sanz, M., J. Pascual and J. Machín (1997b). Prognosis and correction of iron chlorosis in peach trees: Influence on fruit quality. Journal of Plant Nutrition 20: 1567–1572.Google Scholar
  266. Sanz, M., J. Pérez, J. Pascual and J. Machín (1998). Prognosis of iron chlorosis in apple trees by floral analysis. Journal of Plant Nutrition 21: 1697–1703.Google Scholar
  267. Schaller, K., O. Löhnertz and H. Michel (2001). Modified DRIS-system for leaf analysis to optimize the fertilizer inputs — further developments in grapevines. In Book of Abstracts of International Symposiun on Foliar Nutrition of Perennial Fruit Plants. Merano, Italy, p. 88.Google Scholar
  268. Schikora, A. and W. Schmidt (2001). Iron-stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiology 125: 1679–1687.CrossRefGoogle Scholar
  269. Schmidt, W. (1994). Reduction of extracytoplasmatic acceptors by roots of Plantago lanceolata L. Evidence for enzyme heterogeneity. Plant Science 100: 139–146.CrossRefGoogle Scholar
  270. Schmidt, W. (1999). Review. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytologist 141: 1–26.CrossRefGoogle Scholar
  271. Schmidt, W. and M. Bartels (1996). Formation of root epidermal transfer cells in Plantago. Plant Physiology 110: 217–225.Google Scholar
  272. Schmidt, W. and M. Bartels (1998). Orientation of NAHD-linked ferric chelate (turbo) reductase in plasma membranes from roots of Plantago lanceolata. Protoplasma 203: 186–193.CrossRefGoogle Scholar
  273. Schmidt, W., M. Bartels, J. Tittel and C. Fuhner (1997). Physiological effects of copper on iron acquisition processes in Plantago. New Phytologist 135: 659–666.CrossRefGoogle Scholar
  274. Schmidt, W., B. Boomgaarden and V. Ahrens (1996). Reduction of root iron in Plantago lanceolata during recovery from Fe deficiency. Physiologia Plantarum 98: 587–593.Google Scholar
  275. Schmidt, W. and P. Janiesch (1991). Ferric reduction by geum urbanum: a kinetic study. Journal of Plant Nutrition 14: 1023–1034.Google Scholar
  276. Schmidt, W. and C. Schuck (1996). Pyridine nucleotide pool size changes in iron-deficient Plantago lanceolata roots during reduction of external oxidants. Physiologia Plantarum 98: 215–221.Google Scholar
  277. Schmidt, W., J. Tittel and A. Schikora (2000). Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiology 122: 1109–1118.CrossRefGoogle Scholar
  278. Scholz, G., R. Becker, A. Pich and U. W. Stephan (1992). Nicotianamina — a common constituent of strategies I and II of iron acquisition by plants: a review. Journal of Plant Nutrition 15: 1647–1665.Google Scholar
  279. Schwertmann, U. (1991). Solubility and dissolution of iron oxides. Plant and Soil 130: 1–25.CrossRefGoogle Scholar
  280. Serrano, R. (1989). Structure and function of plasma membrane ATPase. Annual Review of Plant Physiology and Plant Molecular Biology 40: 61–94.CrossRefGoogle Scholar
  281. Shi, Y. and D. H. Byrne (1995). Tolerance of Prunus rootstocks to potassium carbonate-induced chlorosis. Journal American Society of Horticultural Science 102: 283–285.Google Scholar
  282. Shi, Y., D. H. Byrne, D. W. Reed and R. H. Loeppert (1993a). Influence of bicarbonate level on iron-chlorosis development and nutrient uptake of the peach rootstock Montclar. Journal of Plant Nutrition 16: 1675–1689.Google Scholar
  283. Shi, Y., D. H. Byrne, D. W. Reed and R. H. Loeppert (1993b). Iron development and growth response of peach rootstocks to bicarbonate. Journal of Plant Nutrition 16: 1039–1046.Google Scholar
  284. Shijiang, Z., L. Daogao and Z. Xuewu (1995). Physiological reaction of citrus tube-cultured seedlings of different genotypes to Fe(II) and HCO3 . Acta Horticulturae 403: 301–305.Google Scholar
  285. Siedlecka, A. and Z. Krupa (1999). Cd/Fe interaction in higher plants — its consequences for the photosynthetic apparatus. Photosynthetica 36: 321–331.CrossRefGoogle Scholar
  286. Sijmons, P. C. and H. F. Bienfait (1984). Mechanism of iron reduction by roots of Phaseolus vulgaris L. Journal of Plant Nutrition 7: 687–693.Google Scholar
  287. Sijmons, P. C, W. Van den Briel and H. F. Bienfait (1984). Cytosolic NADPH is the electron donor for extracellular Fe(III) reduction in iron-deficient bean roots. Plant Physiology 75: 219–221.Google Scholar
  288. Singh, K., T. Sasakuma, N. Bughio, M. Takahashi, H. Nakanishi, E. Yoshimura, N. Nikizawa and S. Mori (2000). Ability of ancestral wheat species to secrete mugineic acid familiy phytosiderophores in response to iron deficiency. Journal of Plant Nutrition 23: 1973–1981.Google Scholar
  289. Smith, B. N. (1984). Iron in higher plants: storage and metabolic role. Journal of Plant Nutrition 7: 759–766.Google Scholar
  290. Smolders, A. J. P., R. J. J. Hendriks, H. M. Campschreur and J. G. M. Roelofs (1997). Nitrate induced iron deficiency chlorosis in Juncus acutiflorus. Plant and Soil 196: 37–45.CrossRefGoogle Scholar
  291. Socias i Company, R., G. Aparisi and A. J. Felipe (1995). A genetical approach to iron chlorosis in deciduous fruit trees. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 167–174.Google Scholar
  292. Sommer, K. (1992). Controlled Uptake Long Term Ammonia Nutrition for Plants ‘CULTAN’-Cropping System. In E. Francois and K. Pithan (eds.), Agriculture: Nitrogen Cycling and Leaching in Cool and Wet Regions of Europe. COST-Workshop, Gembloux, Belgium, pp. 58–63.Google Scholar
  293. Spiegel-Roy, P. (1968). Control of lime-induced iron chlorosis in fruit trees by foliar application of organic polyflavonoids. Agrochimica XII: 441–450.Google Scholar
  294. Spiegel-Roy, P. and E. E. Goldschmidt (1996). Biology of Citrus, lst/Ed. Cambridge University Press, Cambridge, UK.Google Scholar
  295. Spiller, S. and N. Terry (1980). Limiting factors in photosynthesis. II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiology 65: 121–125.Google Scholar
  296. Stephan, U. W., I. Schmidke and A. Pich (1995). Phloem translocation of Fe, Cu, Mn and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedlings parts. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 43–50.Google Scholar
  297. Stephan, U. W. and G. Scholz (1993). Nicotianamine: mediator of transport of iron and heavy metals in the phloem. Physiologia Plantarum 88: 522–529.CrossRefGoogle Scholar
  298. Sudahono, Byrne, D. H. and R. E. Rouse (1994). Greenhouse screening of citrus rootstocks for tolerance to bicarbonate-induced iron chlorosis. HortScience 29: 113–116.Google Scholar
  299. Susín, S., A. Abadía, J. A. González-Reyes, J. J. Lucena and J. Abadía (1996a). The pH requirement for in vivo activity of the Iron-deficiency-induced ‘Turbo’ ferric chelate reductase. Plant Physiology 110: 111–123.Google Scholar
  300. Susín, S., A. Abadía, J. A. González-Reyes, J. J. Lucena and J. Abadía (1996b). The pH requirement of the iron-deficiency-induced iron redutase activities of intact plants and isolated plasma membrane fractions in sugar beet. Plant Physiology 110: 111–123.Google Scholar
  301. Susín, S., J. Abián, M. L. Peleato, F. Sánchez-Baeza, A. Abadía, E. Gelpí and J. Abadía (1994). Flavin excretion from roots of iron-deficient sugar beet (Beta vulgaris L.). Planta 193: 514–519.Google Scholar
  302. Susín, S., J. Abián, F. Sánchez-Baeza, M. L. Peleato, A. Abadía, E. Gelpí and J. Abadía (1993). Riboflavin 3′-and 5′ sulfate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). The Journal of Biological chemistry 5: 20958–20965.Google Scholar
  303. Suzuki, K., H. Hirano, H. Yamaguchi, T. Irifune, N. K. Nishizawa, M. Chino and S. Mori (1995). Partial amino acid sequences of a peptide induced by Fe deficiency in barley roots. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 363–369.Google Scholar
  304. Tagliavini, M., J. Abadía, A. D. Rombolá, A. Abadía, C. Tsipouridis and B. Marangoni (2000). Agronomic means for the control of iron chlorosis in deciduous fruit trees. Journal of Plant Nutrition 23: 2007–2022.Google Scholar
  305. Tagliavini, M., D. Bassi and B. Marangoni (1993). Growth and mineral nutrition of pear rootstocks in lime soils. Scientia Horticulturae 54: 13–22.CrossRefGoogle Scholar
  306. Tagliavini, M., A. Masia and M. Quartieri (1995a). Bulk soil pH and rhizosphere of peach trees in calcareous and alkaline soils as affected by the form of nitrogen fertilizers. Plant and Soil 176: 263–271.CrossRefGoogle Scholar
  307. Tagliavini, M. and A. D. Rombolá (2001). Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy 15: 71–92.CrossRefGoogle Scholar
  308. Tagliavini, M., A. D. Rombolá and B. Marangoni (1995b). Response to iron-deficiency stress of pear and quince genotypes. Journal of Plant Nutrition 18: 2465–2482.Google Scholar
  309. Tagliavini, M., D. Scudellari, B. Marangoni, A. Bastianel, F. Franzin and M. Zamborlini (1992). Leaf mineral composition of apple tree: sampling date and effects of cultivar and rootstock. Journal of Plant Nutrition 15: 605–619.Google Scholar
  310. Tagliavini, M., D. Scudellari, B. Marangoni and M. Toselli (1995c). Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In J. Abadí’a (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 191–195.Google Scholar
  311. Terry, N. (1980). Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiology 65: 114–120.Google Scholar
  312. Terry, N. and J. Abadía (1986). Function of iron in chloroplasts. Journal of Plant Nutrition 9: 609–646.Google Scholar
  313. Terry, N. and G. Low (1982). Leaf chlorophyll content and its relation to the intracellular localization of iron. Journal of Plant Nutrition 5: 301–310.Google Scholar
  314. Thomas, F. N., T. Brandt and G. Hartmann (1998). Leaf chlorosis in pedunculate oaks (Quercus suber L.) on calcareous soils. Resulting from lime-induced manganese/iron deficiency: Soil conditions and physiological reactions. Angewandte Botanik 72: 28–36.Google Scholar
  315. Tipton, C. L. and J. Thowsen (1985). Fe(III) reduction in cell walls of soybean roots. Plant Physiology 79: 432–435.Google Scholar
  316. Tisserat, B. and J. A. Manthey (1996). In vitro sterile hydroponic culture system to study iron chlorosis. Journal of Plant Nutrition 19: 129–143.Google Scholar
  317. Toselli, M., B. Marangoni and M. Tagliavini (2000). Iron content in vegetative and reproductive organs of nectarine trees in calcareous soils during the development of chlorosis. European Journal of Agronomy 13: 279–286.CrossRefGoogle Scholar
  318. Toselli, M., M. Tagliavini and B. Marangoni (1995). La clorosi ferrica el pesco: conoscenza, prevenzione e terapia. Actas del XXII Convegno Peschicollo: 108–113.Google Scholar
  319. Treeby, M. (1992). The role of mycorrhizal fungi and non-mycorrhizal micro-organisms in iron nutrition of citrus. Soil Biology and Biochemistry 24: 857–864.CrossRefGoogle Scholar
  320. Treeby, M. and N. Uren (1993). Iron deficiency stress responses amongst citrus rootstocks. Z. Pflanzenphysiol. Bd. 156: 75–81.Google Scholar
  321. Uren, N. (1993). Mucilage secretion and its interaction with soil, and contact reduction. Plant and Soil 155/156: 79–382.CrossRefGoogle Scholar
  322. Valenzuela, J. L., J. J. Alvarado, A. Sánchez and L. Romero (1995). Influence of N, P and K treatments of several physiological and biochemical iron indicators in melon plants irrigated with brackish water. In J. Abadía (ed.), Iron nutrition in soils andplants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 135–140.Google Scholar
  323. Valenzuela, J. L., A. Sánchez, A. Del Rio, I. López-Cantarero and L. Romero (1992). Influence of plant age on mature leaf iron parameters. Journal of Plant Nutrition 15: 2035–2043.Google Scholar
  324. Varennes, A., M. F. Vicente and E. A. Faria(1997). Tratamento daclorose férrica em pimenteiro. Revista de Ciências Agrárias XX: 49–55.Google Scholar
  325. Vedina, O. and S. Toma (2000). Forms of microelements in apple leaves under different conditions of iron and zinc nutrition. Journal of Plant Nutrition 23: 1135–1143.Google Scholar
  326. Vemmos, S. N. (1999). Mineral composition of leaves and flower buds in fruiting and non-fruiting pistachio trees. Journal of Plant Nutrition 22: 1291–1301.Google Scholar
  327. Vempati, R. K., K. P. Kollipara, J. W. Stucki and Wilkinson (1995). Reduction of structural iron in selected iron-bearing minerals by soybean root exsudates grown in an in vitro geoponic system. Journal of Plant Nutrition 18: 343–345.Google Scholar
  328. Viti, R. and F. Cinelli (1993). Lime-induced chlorosis in quince rootstocks: methodological and physiological aspects. Journal of Plant Nutrition 16: 631–641.Google Scholar
  329. Vizzotto, G., I. Matosevic, R. Pinton, Z. Varanini and G. Costa (1997). Iron deficiency responses in roots of kiwi. Journal of Plant Nutrition 20: 327–334.CrossRefGoogle Scholar
  330. Vizzotto, G., R. Pinton, C. Bomben, S. Cesco, Z. Varanini and G. Costa (1999). Iron reduction in iron-stressed plants of Actinidea deliciosa genotypes: Involvement of PM Fe (III)-chelate reductase and H+-ATPase activity. Journal of Plant Nutrition 22: 479–488.Google Scholar
  331. Vos, C. R., J. Lubberding and H. F. Bienfait (1986). Rhizosphere acidification as a response to iron deficiency in bean plants. Plant Physiology 81: 842–846.Google Scholar
  332. Wallace, A. (1990). Nitrogen, phosphorus, potassium interactions on Valecia orange yields. Journal of Plant Nutrition 13: 357–365.Google Scholar
  333. Wallace, A. (1991). Rational approaches to control iron deficiency other than plant breeding and choice of resistant cultivars. Plant and Soil 130: 281–288.CrossRefGoogle Scholar
  334. Wallace, A. (1995). Agronomic and horticultural aspects of iron and the law of the maximum. In J. Abadía (ed.), Iron nutrition in soils andplants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 207–216.Google Scholar
  335. Wallace, A. and G. A. Wallace (1992). Some of the problems concerning iron nutrition of plants after four decades of synthetic chelating agents. Journal of Plant Nutrition 15: 1487–1508.Google Scholar
  336. Wallace, A., G. A. Wallace and J. W. Cha (1992). Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents. — The special case of iron. Journal of Plant Nutrition 15: 1589–1598.Google Scholar
  337. Walter, A., V. Römheld, H. Marschner and D. E. Crowley (1994). Iron nutrition of cucumber and maize: effect os pseudomonas putida YC 3 and its siderophore. Soil Biology and Biochemistry 26: 1023–1031.CrossRefGoogle Scholar
  338. Wang, T. and J. H. Peverly (1999). Investigation of ferric iron reduction on the root surfaces of common reeds using EDTA-BPDS method. Journal of Plant Nutrition 22: 1021–1032.Google Scholar
  339. Wei, L., R. H. Loeppert and W. R. Ocumpaugh (1998). Characteristic of Fe-deficiency-induced acidification in subterranean clover. Physiologia Plantarum 103: 443–450.CrossRefGoogle Scholar
  340. Wei, L. C, W. R. Ocumpaugh and R. H. Loeppert (1994). Differential effect of soil temperature on ron-deficiency chlorosis in susceptible and resistant subclovers. Crop Science 34: 715–721.CrossRefGoogle Scholar
  341. Wei, L. C, W. R. Ocumpaugh and R. H. Loeppert (1995). Plant growth and nutrient uptake characteristics of Fe-deficiency chlorosis susceptible and resistant subclovers. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 259–264.Google Scholar
  342. Welch, R. M. (1995). Micronutrient nutrition of plants. Critical Reviews Plant Science 14: 49–82.Google Scholar
  343. Welkie, G. W. (1993). Iron stress responses of a chlorosis-susceptible and chlorosis-resistant cultivars of pepper (Capsicum annuum L.). In M. A. C. Fragoso and M. L. van Beusichem (eds.), Optimization of plant nutrition. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 483–489.Google Scholar
  344. Welkie, G. W. (1995). Effect of root temperature on iron stress responses. In J. Abadía (ed.), Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 229–234.Google Scholar
  345. Welkie, G. W. and G. W. Miller (1993). Plant iron uptake physiology by nonsiderophore systems. In L. L. Barton and B. C. Hemming (eds.), Iron chelation in plants and soil microorganisms. Academic press, Inc., San Diego, CA, pp. 345–369.Google Scholar
  346. Winder, T. L. and J. N. Nishio (1995). Early iron deficiency stress response in leaves of sugar beet. Plant Physiology 108: 1487–1494.CrossRefGoogle Scholar
  347. Yehuda, Z., M. Shenker, V. Römheld, H. Marschner, Y. Hadar and Y. Chen (1996). The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiology 112: 1273–1280.Google Scholar
  348. Zaharieva, T. (1995). Iron-manganese interactions in peanut plants as influenced by the source of applied iron. In J. Abadía (ed.), Iron nutrition in soils andplants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 277–282.Google Scholar
  349. Zekri, M. and R. C. J. Koo (1992). Application of micronutrients to citrus trees through microirrigation systems. Journal of Plant Nutrition 15: 2517–2529.Google Scholar
  350. Zhang, X., C. Yi and F. Zhang (1999). Iron accumulation in root apoplasm of dycotiledoneous and graminaceous species grown on calcareous soil. New Phytologist 141: 27–31.CrossRefGoogle Scholar
  351. Zohlen, A. (2000). The use of 1,10-phenanthroline in extracting metabolically active Fe in plants. Communications in Soil Science and Plant Analysis 31: 481–500.CrossRefGoogle Scholar
  352. Zouari, M., A. Abadía and J. Abadía (2001). Iron is required for the induction of root ferric chelate reductase activity in iron-deficient tomato. Journal of Plant Nutrition 24: 383–396.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Maribela Pestana
    • 1
  • Eugénio Araújo Faria
    • 1
  • Amarilis de Varennes
    • 2
  1. 1.Faculdade de Engenharia de Recursos NaturaisUniversidade do AlgarveFaroPortugal
  2. 2.Departamento de Química Agrícola e AmbientalInstituto Superior de AgronomiaLisboaPortugal

Personalised recommendations