Advertisement

Origins pp 463-480 | Cite as

Importance of Chemolithotrophy for Early Life on Earth: The Tinto River (Iberian Pyritic Belt) Case

  • R. Amils
  • E. González-Toril
  • F. Gómez
  • D. Fernández-Remolar
  • N. Rodríguez
  • M. Malki
  • J. Zuluaga
  • A. Aguilera
  • L. A. Amaral-Zettler
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 6)

Keywords

Ferric Iron Banded Iron Formation Sulfur Cycle Soluble Iron Iberian Pyritic Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  1. Amaral-Zettler, L. A., Gómez, F., Zettler, E., Keenan, B. G., Amils, R., Sogin, M. L. (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417, 137.CrossRefGoogle Scholar
  2. Amils, R., González-Toril, E., Gómez, F., Fernández-Remolar, D., Rodríguez, N. (2000) Geomicrobiology of an extreme acidic environment: the Tinto River case. 2000 Spring Meeting, American Geophysical Society, Abstract B22B-05.Google Scholar
  3. Amils, R., Gónzalez-Toril, E., Fernández-Remolar, D., Gómez, F., Rodríguez, N., Durán, C. (2003) Interaction of the sulfur and iron cycles, the Tinto River case. Rev/Views in Environmental Science and Biotechnology, in press.Google Scholar
  4. Anbar, A. D., Knoll, A. H. (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142.CrossRefGoogle Scholar
  5. Archibald, F. (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiology Letters 19, 29–----.Google Scholar
  6. Asensi, A., Diaez, B. (1987) Andalucía Occidental, In: M. Peinado and S. Rivas-Martínez (eds.) La vegetacion de España. U. de Alcalá de Henares, Colección Aula Abierta 3, 199–230.Google Scholar
  7. Avery, D. (1974) Not on Queen Victoria’s Birthday, Collins, London.Google Scholar
  8. Bachofen, R., Ferloni, P., Flynn, L. (1998) Review: microorganisms in the subsurface. Microbiological Research 153, 1–22.Google Scholar
  9. Barley, M.E., Pickard, A.L., Sylvester, P.J. (1997) Emplacement of a large igneous province as a possible cause of banded iron formation 2. 45 billion years ago. Nature 385, 55–58.CrossRefGoogle Scholar
  10. Benz, M., Brune, A., Schink, B. (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Archievs of Microbiology 169, 159–165.CrossRefGoogle Scholar
  11. Blake II, R., Johnson, D.B. (2000) Phylogenetic and biochemical diversity among acidophilic bacteria that respire iron, In: D.R. Lovely (ed.) Environmental microbe-metal interactions, ASM Press, Washington, pp. 53–78.Google Scholar
  12. Boulter, C.A. (1996) Did both extensional tectonics and magmas act as major drivers of convection cells during the formation of the Iberian Pyrite Belt massive sulfide deposits? Journal of the Geological Society of London 153, 181–184.Google Scholar
  13. Boyd, W. P. et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702.CrossRefGoogle Scholar
  14. Braun, V., Killmann, H. (1999) Bacterial solutions to the iron-supply problems. Trends in Biochemical Sciences 24, 104–109.CrossRefGoogle Scholar
  15. Bridge, T.A.M., Johnson, D.B. (2000) Reductive dissolution of ferric iron minerals by Acidiphilium SHJ. Geomicrobiology Journal 17, 193–206.CrossRefGoogle Scholar
  16. Canfield, D.E. (1998) A new model for Proterozoic ocean chemistry. Nature 396, 450.CrossRefGoogle Scholar
  17. Chapelle, F.H., O’Nelly; K., Bradley, P.M., Methé, B.A., Ciufo, S.A., Knobel, L.L., Lovley, D.R. (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–314.CrossRefGoogle Scholar
  18. Clemente, L., Menanteau, L., Rodríguez-Vidal, J. (1985) Los depósitos holocenos en el estuario de los ríos Tintoy Odiel (Huelva,España). Actas I Reunión del Cuaternario Ibérico I, 339–353.Google Scholar
  19. Cloud, P. (1973) Paleoecological significance of the Banded Iron Formations. Economic Geology 68, 1135–1143.Google Scholar
  20. Colmer, A.R., Temple, K.L., Hinkle, H.E. (1950) An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. Journal of Bacteriology 59, 317–328.Google Scholar
  21. Davis Jr., R.A., Welty, A.T., Borrego, J., Morales, J.A., Pendon, J.G., Ryan, J.G. (2000) Rio Tinto estuary (Spain): 5000 years of pollution. Environmental Geology 39, 1107–1116.CrossRefGoogle Scholar
  22. de Duve, C. (1987) Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proceedings of the National Academy of Science USA 84, 8253–8256.Google Scholar
  23. de Ronde, C.E., De Wit, M.J., Spooner, E.T.C. (1984) Early Archaean (<3. 2 Ga) Fe-oxide-rich, hydrothermal discharge vents in the Barbeton greenstone belt, South Africa. Geolog. Soc. Am. Bull. 106, 86–104.CrossRefGoogle Scholar
  24. Edwards, K.J., Bond, P.I., Gihrin, T.M., Banfield, J.F. (2000) An archaeal iron oxidizing extreme acidophile important in acidic mine drainage. Science 287, 1796–1798.CrossRefGoogle Scholar
  25. Ehrlich, H.L. (2001) Past, present and future of biohydmetallurgy. Hydrometallurgy 59, 127–134.CrossRefGoogle Scholar
  26. Ehrlich, H.L. (2002) Geomicrobiology, fourth edition, Marcel Dekker, Inc., New YorkGoogle Scholar
  27. Elbaz-Poulichet, F., Braungardt, C, Achterberg, E., Morley, N., Cossa, D., Beckers, J.M., Nomérange, P., Cruzado, A., Leblanc, M. (2001) Metal biogeochemistry in the Tinto-Odiel rivers (Southern Spain) and in the Gulf of Cadiz: a synthesis of the results of TOROS project. Continental Shelf Research 21, 1961–1973.CrossRefGoogle Scholar
  28. Fenchel, T., King, G.M., Blackburn, T.H. (1998) Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 2nd edition. Academic Press, San Diego.Google Scholar
  29. Fernández-Remolar, D., Rodríguez, N., Gómez, F., Amils, R. (2003) The geological record of an acidic environment driven by the iron hydrochemistry: the Tinto River system. Journal of Geophysical Research, Planets, in press.Google Scholar
  30. Gehrke, T., Hallmann, R., Sand, W. (1995) Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillumferrooxidans for bioleaching, In: T. Vargas, C.A. Jerez., K.V. Wiertz, and H. Toledo (eds.) Biohydrometallurgical Processing, vol 1, Universidad de Chile, Santiago, pp. 1–11.Google Scholar
  31. Geen, A. van, Adkins, J.F., Boyle, E.A., Nelson, C.H., Palanques, A. (1997). A 120-year record of widespread contamination from mining of the Iberian pyrite belt. Geology 25, 291–294CrossRefGoogle Scholar
  32. Godd, T. (1992) The deep hot biosphere. Proceedings of the National Academy of Science USA 89, 6045–6049.Google Scholar
  33. Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondratèva, T.F., Moore, E.R.B., Abraham, W.R., Lündsford, H., Timmis, K.N., Yakimov, M.M., Golyshin, P.N. (2000) Ferroplasma acidiphilium gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferropiasmaceae fa. nov., comprising a distinct lineage of the Archaea. Int. J. Syst. Evol. Microbiol 50, 997–1006.Google Scholar
  34. Gómez, F., Amils, R. (2002) Life as an environmental transformer, In: B. Montesinos, A. Jiménez and E.F. Guinan (eds.) The Eevolving Sun and its Influence on Planetary Environments, The Astronomical Society of the Pacific Conference Series, San Francisco, vol 269, pp. 339–352.Google Scholar
  35. Gómez, F, Fernández-Remolar, D González-Toril E., Amils R (2003) The Tinto River, an extreme Gaian enviroment, In: L. Margulis, J. Miller, P. Boston, S. Schneider and E. Crist (eds.) Gaia 2002. MIT Press, Boston, in press.Google Scholar
  36. González-Toril, E. (2002) Ecología molecular de la comunidad microbiana de un ambiente extremo: el Río Tinto. Ph. D. Thesis, U. Autónoma de Madrid, Spain.Google Scholar
  37. González-Toril, E., Gómez, F., Rodríguez, N., Fernández-Remolar, D., Zuluaga, J., Marín, I., Amils, R. (2002) Geomicrobiology of the Tinto River, a model of interest for biohydrometallurgy. Hydrometallurgy in press.Google Scholar
  38. Hansford, G.S., Vargas, T. (2001) Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy 59, 135–145.CrossRefGoogle Scholar
  39. Holland, H.D. (1973) The oceans: a possible source of iron in iron-formations. Economic Geology 68, 1169–1172.CrossRefGoogle Scholar
  40. Holland, H.D. (1978) The Cchemistry of the Atmosphere and Oceans. Wiley, New York.Google Scholar
  41. Holland, H.D. (1984) The Chemical Evolution of the Atmosphere and Oceans. Priceton University Press, New York.Google Scholar
  42. Johnson, D.B. (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiological Ecology 27, 307–317.Google Scholar
  43. Johnson, D.B. (1999) Importance of microbial ecology in the development of new mineral technologies, In: R. Amils and A. Ballester (eds.) Biohydrometallurgy and the Environment toward the Mining of the 21 st century, vol A.. Elsevier, Amsterdam, pp. 645–656.Google Scholar
  44. Kasting, J.F. (1993) Earth’s early atmosphere. Science 259, 920–926.Google Scholar
  45. Leblanc, M., Morales, J.A., Borrego, J., Elbaz-Poulichet, F. (2000) A 4,500-year-old mining pollution in Southwestern Spain: long-term implications for modern mining pollution. Economy Geology 95, 655–662.CrossRefGoogle Scholar
  46. Leistel, J.M., Marcoux, E., Thiéblemont, D., Quesada, C, Sánchez, A., Almodóvar, G.R., Pascual, E., Sáez, R. (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Mineralium Deposita 33, 2–30.CrossRefGoogle Scholar
  47. Lescuyer, J.L., Leistel, J.M., Marcoux, E., Milési, J.P., Thiéblemont, D. (1998) Late Devonian-Early Carboniferous peak sulphide mineralization in the Western Hercynides. Mineralium Deposita 33, 208–220.CrossRefGoogle Scholar
  48. López-Archilla, A.I., Marín, I., Amils, R. (1993) Bioleaching and interrelated acidophilic microorganisms from Río Tinto, Spain. Geomicrobiology Journal 11, 223–233.CrossRefGoogle Scholar
  49. López-Archilla, A.I., Marín, I., González, A., Amils, R (1995) Identification of fungi from an acidic river, In: L. Rossen, V. Rubio, M.T. Dawson, and J. Frisvard (eds.) Fungal identification techniques. European Commission, Luxemburg, pp. 202–211.Google Scholar
  50. López-Archilla, A.I., Amils, R. (1999) Microbial community composition and ecology of an acidic aquatic environment. Microbial Ecology 41, 20–35.Google Scholar
  51. López-Archilla, A.I., Marín, I., Amils, R. (2001) Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microbial Ecology 41, 20–35.Google Scholar
  52. Lovley, D.R. (2000) Fe(III) and Mn(IV) reduction, In: D.R. Lovley (ed.) Environmental microbe-metal interactions, ASM Press, Washington, pp. 3–30.Google Scholar
  53. Martin, J.H. (1990) Glacial-interglacial CO2 chamge: the iron hypothesis. Paleoceanography 5, 1–13.CrossRefGoogle Scholar
  54. Moreira, D., López-Archilla, A.I., Amils, R., Marin, I. (1994) Characterization of two new thermoacidophilic microalgae: genome organization and comparison with Galdieria sulphurica. FEMS Microbiology Letters 122, 109–114.CrossRefGoogle Scholar
  55. Morrison, D. (2001) The NASA Astrobiology Program. Astrobiology 1, 3–14.CrossRefGoogle Scholar
  56. Ohmoto, H. (1997) When did the earth’s atmosphere become oxic? Geochemical News 93, 13.Google Scholar
  57. Pedersen, K. (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Letters 185, 9–16.Google Scholar
  58. Phillips, J.A. (1881) Note on the ocurrence of remains of recent plants in brown iron-ore. Journal of the Geological Society of London 27, 1–5.Google Scholar
  59. Price, C.A. (1968) Iron compounds and plant nutrition. Annual Review of Plant Physiology 19, 239–248.CrossRefGoogle Scholar
  60. Reid, R.T., Live, D.H., Faulkner, D.J., Buttler, A. (1993) A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366, 455–458.CrossRefGoogle Scholar
  61. Rivas-Martínez, S. (1987) Nociones sobre fitosociología, biogeografía y bioclimatología, In: M. Peinado and S. Rivas-Martínez (eds.) La vegetacón de España. U. de Alcala de Henares, Colección Aula Abierta 3, 19–45.Google Scholar
  62. Rodríguez-Vidal, J., Mayoral, E., Pedón, J.G. (1985) Aportaciones paleoambientales al tránsito Plio-Pleistoceno en el litoral de Huelva. Actas I Reunión del Cuaternario Ibérico I, 447–459.Google Scholar
  63. Rothschild, L.J., Mancinelli, R.L. (2001) Life in extreme environments Nature 409, 1092–1101.CrossRefGoogle Scholar
  64. Sand, W., Gehrke, T., Hallmann, R., Schippers, A. (1995) Sulfur chemistry, biofilm and the (indirect attack mechanism-a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology 43, 961–966.CrossRefGoogle Scholar
  65. Sand, W., Gehrke, T., Jozsa, P.G., Schippers, A. (2001) (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59, 159–175.CrossRefGoogle Scholar
  66. Silverman, M.P., Ehrlich, H.L. (1964) Microbial formation and degradation of minerals. Advances in Applied Microbiology 6, 153–206.CrossRefGoogle Scholar
  67. Trendall, A.F., Morris, R.C. (1993) Iron-Formation: Facts andProblems, Elsevier, Amsterdam.Google Scholar
  68. Vargas, M., Kashefi, K., Blunt-Harris, E.L., Lovely, D.R. (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395, 65–67.CrossRefGoogle Scholar
  69. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., Schink, B. (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. Amils
    • 1
    • 2
  • E. González-Toril
    • 2
  • F. Gómez
    • 1
  • D. Fernández-Remolar
    • 1
  • N. Rodríguez
    • 1
  • M. Malki
    • 2
  • J. Zuluaga
    • 3
  • A. Aguilera
    • 1
  • L. A. Amaral-Zettler
    • 4
  1. 1.Centro de Astrobiología (CSIC-INTA)Torrejón de ArdozMadridSpain
  2. 2.Centro de Biología Molecular (CSIC-UAM)U. Autóonoma de Madrid, CantoblancoMadridSpain
  3. 3.Departamento de Química Física AplicadaU. Autónoma de MadridCantoblancoSpain
  4. 4.Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations