Origins pp 299-313

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 6) | Cite as

Potential Role of Dissimilatory Iron Reduction in the Early Evolution of Microbial Respiration

  • Derek R. Lovley


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Afshar, S., Kim, C, Monbouquette, H. G. and Schroder, I. (1998). Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon Pyrobaculum aerophilum. Appl. Environ. Microbiol. 64, 3004–3008.Google Scholar
  2. Anbar, A., Roe, J., Barling, J. and Nealson, K. H. (2000). Nonbiological fractionation of iron isotopes. Science. 288, 126–128.CrossRefGoogle Scholar
  3. Anderson, R. T., Chapelle, F. H. and Lovley, D. R. (1998). Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science. 281, 976–977.CrossRefGoogle Scholar
  4. Anderson, R. T. and Lovley, D. R. (1997). Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microbial Ecol. 15, 289–350.Google Scholar
  5. Anderson, R. T., Rooney-Varga, J., Gaw, C. V. and Lovley, D. R. (1998). Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32, 1222–1229.CrossRefGoogle Scholar
  6. Balashova, V. V. and Zavarzin, G. A. (1980). Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology. 48, 635–639.Google Scholar
  7. Baross, J. A. and Hoffman, S. E. (1985). Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life. 15, 327–345.CrossRefGoogle Scholar
  8. Baur, M. E., Hayes, J. M., Studley, S. A. and Walter, M. R. (1985). Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. Econ. Geol. 80, 270–282.Google Scholar
  9. Beard, B. L., Johnson, C. M., Cox, L., Sun, H., Nealson, K. H. and Aguilar, C. (1999). Iron isotope biosignatures. Science 285, 1889–1892.CrossRefGoogle Scholar
  10. Bock, G. R. and Goode, J. A. (1996). Evolution of hydrothermal ecosystems on Earth (and Mars?). West Sussex, England, John Wiley & Sons Ltd.Google Scholar
  11. Bond, D. R., Holmes, D. E., Tender, L. M. and Lovley, D. R. (2002). Electrode-reducing microorganisms harvesting energy from marine sediments. Science 295, 483–485.CrossRefGoogle Scholar
  12. Bond, D. R. and Lovley, D. R. (2002). Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ. Microbiol. 4, 115–124.CrossRefGoogle Scholar
  13. Bond, D. R. and Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555.CrossRefGoogle Scholar
  14. Brock, T. D., S., C, Petersen, S. and Mosser, J. L. (1976). Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim. Cosmochim. Acta 40, 493–500.CrossRefGoogle Scholar
  15. Brookins, D. G. (1990). Radionuclide behavior at the Oklo nuclear reactor, Gabon. Waste Manage. 10, 285–296.CrossRefGoogle Scholar
  16. Cairns-Smith, A. G., Hall, A. J. and Russell, M. J. (1992). Mineral theories of the origin of life and an iron sulfide example. Orig. Life Evol. Biosphere. 22, 161–180.CrossRefGoogle Scholar
  17. Cameron, E. M. (1982). Sulphate and sulphate reduction in early Precambrian oceans. Nature 296, 145–148.CrossRefGoogle Scholar
  18. Chapelle, F. H., O’Neill, K., Bradley, P. M., Methé, B. A., Ciufo, S. A., Knobel, L. L. and Lovley, D. R (2002). A hydrogen-based subsurface community dominated by methanogens. Nature 415, 312–316.CrossRefGoogle Scholar
  19. Childers, S. and Lovley, D. R. (2001). Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)-reducing bacteria. FEMS Microbiol. Lett. 195, 253–258.Google Scholar
  20. de Duve, C. (1995). Vital Dust. New York, Basic Books.Google Scholar
  21. Ehrenreich, A. and Widdel, F. (1994). Anaerobic oxidation of ferrous iron by purple bacteria, new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526.Google Scholar
  22. Eastoe, C. J., Gustin, M. S., Hurlbut, D. F. and Orr, R. L. (1990). Sulfur isotopes in early Proterozoic volcanogenic massive sulfide deposits: new data from Arizona and implications for ocean chemistry. Precambrian Res. 46, 353–364.CrossRefGoogle Scholar
  23. Finneran, K., Anderson, R. T., Nevin, K. P. and Lovley, D. R. (2002). Bioremediation of uraniumcontaminated aquifers with microbial U(VI) reduction. Soil and Sediment Contamination. 11, 339–357.CrossRefGoogle Scholar
  24. Gold, T. (1992). The deep, hot biosphere. Proc. Natl. Acad. Sci. USA. 89, 6045–6049.Google Scholar
  25. Greene, A. C, Patel, B. K. C. and Sheehy, A. J. (1997). Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. Int.. J. Syst. Bacteriol. 47, 505–509.CrossRefGoogle Scholar
  26. Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Robnagel, P., Burggraf, S., Huber, H. and Stetter, K. O. (1996). Ferroglobus placidus gen nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe+2 at neutral pH under anoxic conditions. Arch. Microbiol. 166, 308–314.CrossRefGoogle Scholar
  27. Hartman, H. (1984). The evolution of photosynthesis and microbial mats: a speculation on the banded iron formations. In: Y. Cohen, R.W. Castenholz, and H.O. Halverson (eds.) Microbial Mats: Stromatolites. New York, Alan R. Liss, Inc.: 449–453.Google Scholar
  28. Holm, N. G. (1992). Why are hydrothermal systems proposed as plausible environments for the origin of life? Origins Life Evol. Biosphere. 22, 5–14.CrossRefGoogle Scholar
  29. Holmes, D. E., Finneran, K. T. and Lovley, D. R. (2002). Enrichment of Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl. Environ. Microbiol. 68, 2300–2306.CrossRefGoogle Scholar
  30. Hostetler, P. B. and Garrels, R. M. (1962). Transportation and precipitation of uranium and vanadium at low temperatures with special reference to sandstone-type uranium. Econ. Geol. 57, 137–167.CrossRefGoogle Scholar
  31. Huber, H., Jannasch, H., Rachel, R., Fuchs, T. and Stetter, K. O. (1997). Archaeoglobus veneficus sp. nov., a novel facultative chemolithotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. System. Appl. Microbiol. 20, 374–380.Google Scholar
  32. Hugenholtz, P., Pitulle, C, Hershberger, K. L. and Pace, N. R. (1998). Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376.Google Scholar
  33. Jannasch, H. W. (1995). Microbial interactions with hydrothermal fluids. Seafloor Hyrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91. 273–296.Google Scholar
  34. Karl, D. M. (1995). Ecology of free-living hydrothermal vent microbial communities. The Microbiology of Deep-Sea Hydrothermal Vents. D. M. Karl. New York, CRC Press: 35–124.Google Scholar
  35. Kashefi, K., Holmes, D. E., Reysenbach, A.-L. and Lovley, D. R. (2002a). Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacteriumferrireducens, gen., nov., sp. nov. Appl. Environ. Microbiol. 68, 1735–1742.CrossRefGoogle Scholar
  36. Kashefi, K. and Lovley, D. R. (2000). Reduction of Fe(III), Mn(IV), and toxic metals at 100 †C by Pyrobaculum islandicum. Appl. Environ. Microbiol. 66, 1050–1056.CrossRefGoogle Scholar
  37. Kashefi, K. and Lovley, D. R. (2003). Extending the upper temperature limit for life. Science (submitted).Google Scholar
  38. Kashefi, K., Tor, J., Nevin, K. P. and Lovley, D. R. (2001). Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl. Environ. Microbiol. 67, 3275–3279.CrossRefGoogle Scholar
  39. Kashefi, K., Tor, J. M., Holmes, D. E., VanPraagh, C. V. G., Reysenbach, A.-L. and Lovley, D. R. (2002b). Geoglobus ahangari, gen. nov., sp. nov., a novel hyperthermophilic Archaeum capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int. J. Syst. Evol. Microbiol. 52, 719–728.CrossRefGoogle Scholar
  40. Lovley, D. R. (1987). Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiol. J. 5, 375–399.CrossRefGoogle Scholar
  41. Lovley, D. R. (1990). Magnetite formation during microbial dissimilatory iron reduction. Iron Biominerals. R. B. Frankel and R. P. Blakemore. New York, Plenum Press: 151–166.Google Scholar
  42. Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259–287.Google Scholar
  43. Lovley, D. R. (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Industr. Microbiol. 14, 85–93.CrossRefGoogle Scholar
  44. Lovley, D. R. (2000). Fe(III) and Mn(IV) Reduction. Environmental Microbe-Metal Interactions. D. R. Lovley. Washington, D.C., ASM Press: 3–30.Google Scholar
  45. Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P. and Siegel, D. I. (1989). Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–299.CrossRefGoogle Scholar
  46. Lovley, D. R. and Chapelle, F. H. (1995). Deep subsurface microbial processes. Rev. Geophsy. 33, 365–381.CrossRefGoogle Scholar
  47. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. and Woodward, J. C. (1996). Humic substances as electron acceptors for microbial respiration. Nature. 382, 445–448.CrossRefGoogle Scholar
  48. Lovley, D. R., Fraga, J. L., Blunt-Harris, E. L., Hayes, L. A., Phillips, E. J. P. and Coates, J. D. (1998). Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26, 152–157.CrossRefGoogle Scholar
  49. Lovley, D. R., Kashefi, K., Vargas, M., Tor, J. M. and Blunt-Harris, E. L. (2000). Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem. Geol. 169, 289–298.CrossRefGoogle Scholar
  50. Lovley, D. R. and Lonergan, D. J. (1990). Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56, 1858–1864.Google Scholar
  51. Lovley, D. R, Phillips, E. J. P., Gorby, Y. A. and Landa, E. R. (1991). Microbial reduction of uranium. Nature. 350, 413–416.CrossRefGoogle Scholar
  52. Lovley, D. R., Stolz, J. F., Nord, G. L. and Phillips, E. J. P. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 330, 252–254.CrossRefGoogle Scholar
  53. Lovley, D. R, Woodward, J. C. and Chapelle, F. H. (1994). Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature. 370, 128–131.CrossRefGoogle Scholar
  54. McKay, D. S., Gibson Jr., E. K., Thomas-Deprta, K. L., Vali, H., Romanek, C. S., Clement, S. J., Chillier, X. D. F., Maechling, C. R. and Zare, R N. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science. 273, 924–930.Google Scholar
  55. Nakashima, S., Disnar, J. R., Perruchot, A. and Trichet, J. (1984). Experimental study of mechanisms of fixation and reduction of uranium by sedimentary organic matter under diagenetic or hydrothermal conditions. Geochim. Cosmochim. Acta. 48, 2321–2329.CrossRefGoogle Scholar
  56. Pace, N. R. (1991). Origin of life-facing up to the physical setting. Cell. 65, 531–533.CrossRefGoogle Scholar
  57. Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D. and Lovley, D. R. (1999). Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65, 3056–3063.Google Scholar
  58. Russell, M. J., Daia, D. E. and Hall, A. J. (1998). The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean. Thermophiles: The Keys to Molecular Evolution and the Origin of Life? J. Wiegel and M. W. W. Adams. Philadelphia, PA, Taylor & Francis Ltd.: 77–126.Google Scholar
  59. Russell, M. J. and Hall, A. J. (2002). Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. Geochem. News 113, 6–12.Google Scholar
  60. Slobodkin, A., Jeanthon, C, L’Haridon, S., Nazina, T. and Miroshnichenko, M. (1999a). Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs in Western Siberia. Curr. Microbiol. 39, 99–102.CrossRefGoogle Scholar
  61. Slobodkin, A. I., Zavarzina, D. G., Sokolova, T. G. and Bonch-Osmolovskaya, E. A. (1999b). Dissimilatory reduction of inorganic electron acceptors by thermophilic anaerobic prokaryotes. Microbiology. 68, 600–622.Google Scholar
  62. Snoeyenbos-West, O. L., Nevin, K. P. and Lovley, D. R. (2000). Stimulation of dissimilatory Fe(III) reduction results in a predominance of Geobacter species in a variety of sandy aquifers. Microbial Ecol. 39, 153–167.CrossRefGoogle Scholar
  63. Stetter, K. O. (1996). Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18, 149–158.Google Scholar
  64. Tor, J. M., Amend, J. P. and Lovley, D. R. (2003). Metabolism of organic compounds in anaerobic, hydrothermal sulfate-reducing sediments. Environ. Microbiol. (in press).Google Scholar
  65. Tor, J. M., Kashefi, K. and Lovley, D. R. (2001). Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl. Environ. Microbiol. 67, 1363–1365.CrossRefGoogle Scholar
  66. Tor, J. M. and Lovley, D. R. (2001). Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobusplacidus. Environ. Microbiol. 3, 281–287.CrossRefGoogle Scholar
  67. Vargas, M., Kashefi, K., Blunt-Harris, E. L. and Lovley, D. R (1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature. 395, 65–67.CrossRefGoogle Scholar
  68. Volkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A. and Stetter, K. O. (1993). Pyrobaculum aerophilum sp. nov, a novel nitrate-reducing hyperthermophilic Archaeum. Appl. Environ. Microbiol. 59, 2918–2926Google Scholar
  69. Walker, J. C. G. (1987). Was the Archaean biosphere upside down? Nature. 329, 710–712.CrossRefGoogle Scholar
  70. Walker, J. C. G. and Brimblecombe, P. (1985). Iron and sulfur in the pre-biologic ocean. Precambrian Research 28, 205–222.CrossRefGoogle Scholar
  71. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B. (1993). Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature. 362, 834–835.CrossRefGoogle Scholar
  72. Woese, C. (1998). The universal ancestor. Proc. Natl. Acad. Sci. USA. 95, 6854–6859.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Derek R. Lovley
    • 1
  1. 1.Department of MicrobiologyUniversity of Massachusetts-AmherstAmherstUSA

Personalised recommendations