Multi-Agent Systems, Time Geography, and Microsimulations

  • Magnus Boman
  • Einar Holm


We have argued that time geography provides a perspective that helps unify the two paradigms of (a) multi-agent systems, as developed within computer science, and (b) microsimulations, as developed within the social sciences. By identifying and defining these two paradigms, and by reasoning about the central concepts of each of them, we have taken a first step in amalgamating them. We have attempted to take a general systems approach in order to avoid myopia and jargon limitations, and hopefully avoid being too narrow in scope (an approach different from, e. g., Gimblett, 2002).

Our claim is that developments based on a synthesis of the three paradigms offer a rich potential for substantial advance of systems analysis methodology. It gives a new angle to classical problems like how to achieve consistency with the world outside a defined core system boundary, how to simultaneously represent processes on very different spatial and temporal scales, how to enable agents to concurrently obey internal and external rules, and how to integrate observable and postulated behavior while preserving achievability of endogenous emergence.


Social Phenomenon Micro Model Microsimulation Model Social Simulation Trading Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agre, P. & Chapman, D. (1987). pengi-An Implementation of aTheory of Activity. In Proc AAAI (pp. 268–272). San Mateo, Calif.: Morgan Kaufmann.Google Scholar
  2. Antcliff, S. (1993). An Introduction to DYNAMOD-A Dynamic Population Microsimulation Model. Canberra, Australia: National Centre for Social and Economic Modelling.Google Scholar
  3. Axelrod, R. (1997a). Advancing the Art of Simulation in the Social Sciences. In R. Conte, R. Hegselmann, & P. Terno (Eds.), Simulating Social Phenomena (pp. 21–40). Berlin: Springer Verlag.Google Scholar
  4. Axelrod, R. (1997b). The Complexity of Cooperation, Princeton, N.J.: Princeton University Press.Google Scholar
  5. Axtell, R. (2000). Why Agents? On the Varied Motivations for Agent Computing in the Social Sciences, Working Paper 17. Center on Social and Economic Dynamics, Brookings Institution.Google Scholar
  6. Axtell, R., Axelrod, R., Epstein, J., & Cohen, M. (1996). Aligning Simulation Models: A Case Study and Results. Computational and Mathematical Organization Theory, 1, 123–141.CrossRefGoogle Scholar
  7. Bertels, K. & Boman, M. (2001). Agent-Based Social Simulation in Markets. Electronic Commerce Research, 1(1–2), 149–158.zbMATHCrossRefGoogle Scholar
  8. Boman, M. (1999). Norms in Artificial Decision Making. Artificial Intelligence and Law, 7, 17–35.CrossRefGoogle Scholar
  9. Boman, M. (2001). Trading Agents. AgentLink News, 6, 15–17.Google Scholar
  10. Boman, M., Bubenko jr., J., & Johannesson, P. (1997). Conceptual Modelling. London: Prentice-Hall.Google Scholar
  11. Bond, A.H. & Gasser, L. (Eds.) (1988). Readings in Distributed Artificial Intelligence. San Mateo, Calif.: Morgan Kaufmann.Google Scholar
  12. Bratman, M.E. (1987). Intention, Plans, and Practical Reason. Cambridge, Mass., London: Harvard University Press.Google Scholar
  13. Brooks, R.A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.Google Scholar
  14. Brooks, R.A. (1990). Elephants don’t play chess. In P. Maes (Ed.), Designing Autonomous Agents, Theory and Practice from Biology to Engineering and Back (pp. 3–15). Cambridge: The MIT Press.Google Scholar
  15. Caldwell, S. & Keister, L.A. (1996). Wealth in America: family stock ownership and accumulation 1960–95. In G.P. Clarke (1996).Google Scholar
  16. Carpenter, J. (2002). Evolutionary Models of Bargaining: Comparing Agent-based Computational and Analytical Approaches to Understanding Convention Evolution. Computational Economics 19(1), 25–49.CrossRefzbMATHGoogle Scholar
  17. Castelfranchi, C. (1998). Modelling Social Action for ai Agents. Artificial Intelligence, 103(1–2), 157–182.zbMATHCrossRefGoogle Scholar
  18. Clarke, G.P. (Ed.) (1996). Microsimulation for Urban and Regional Policy Analysis. European Research in Regional Science, 6, 88–116.Google Scholar
  19. Clarke, M. & Wilson, A.G. (1986). A framework for dynamic comprehensive urban models: the integration of accounting and Microsimulation approaches. Sistemi Urbani, 213, 145–177.Google Scholar
  20. Clarke, M. & Holm, E. (1987). Micro-simulation methods in human geography and planning: a review and further extensions. Geografiska Annaler, 69B, 145–164.Google Scholar
  21. Dean, T. & Boddy, M. (1988). An Analysis of Time-Dependent Planning. In Proc AAAI (pp. 49–54). St. Paul MN.Google Scholar
  22. Dennett, D.C. (1978). Brainstorms-Philosophical Essays on Mind and Psychology. Cambridge, Mass.: The MIT Press.Google Scholar
  23. Durlauf, S.N. (1999). How can Statistical Mechanics Contribute to Social Science? Proc Natl Acad Sci USA, 96, 10582–10584.PubMedCrossRefMathSciNetzbMATHADSGoogle Scholar
  24. Epstein, J.M. & Axtell, R. (1996). Growing Artificial Societies-Social Science From theBottom Up. Washington DC: The Brookings Institution.Google Scholar
  25. Fagin, R., Halpern, J.V., Moses, Y., & Vardi, M.Y. (1995). Reasoning About Knowledge. Cambridge, Mass.: The MIT Press.zbMATHGoogle Scholar
  26. Genesereth, M. & Ketchpel, S. (1994). Software Agents. Communications of the ACM, 37(7), 48–53.CrossRefGoogle Scholar
  27. Georgeff, M.P. & Lansky, A.L. (1987). Reactive Reasoning and Planning. In Proc AAAI’87 (pp. 677–682). Seattle WA.Google Scholar
  28. Giddens, A. (1984). The Constitution of Society-Outline of the Theory of Structuration. Berkeley: University of California Press.Google Scholar
  29. Gilbert, N. & Troitzsch, K.G. (1999). Simulation for the Social Scientist. Buckingham: Open University Press.Google Scholar
  30. Gimblett, H.R. (Ed.) (2002). Integrating Geographic Information Systems and Agent-Based Modeling Techniques for Simulating Social and Ecological Processes. New York, Oxford: Oxford University Press.Google Scholar
  31. Habermas, J. (1981). Theorie des Kommunikativen Handels. Frankfurt AM Main: Suhrkamp Verlag.Google Scholar
  32. Hägerstrand, T. (1953). Innovationsförloppet ur kronologisk synpunkt. Meddelanden från Lunds universitets geografiska institution, avhandlingar XXV. Lund University.Google Scholar
  33. Hägerstrand, T. (1975a). Space, time and human condition. In A. Karlqvist, L. Lundqvist, & F. Snickars (Eds.), Dynamic Allocation of Urban Space (pp. 2–12). Farnborough: Saxon House.Google Scholar
  34. Hägerstrand, T. (1975b). Survival and arena: on the life-history of individuals in relation to their geographical environment. Monadnock, 49, 9–29.Google Scholar
  35. Hägerstrand, T. (1995). Action in the physical everyday world. In A.D. Cliff, P. Gould, A. Hoare, & N. Thrift (Eds.), Diffusing Geography: Essays for Peter Haggett, Blackwell.Google Scholar
  36. Holm, E. & Sander, L. (2001). Modèles spatiaux de microsimulation. In L. Sander (Ed.), Modèles en analyse spatiale. Lavoisier.Google Scholar
  37. Holm, E., Mäkilä, K., & Öberg, S. (1989). Tidsgeografisk handlingsteori-Att bilda betingade biografier. GERUM Rapport No. 8. Umeå: University of Umeå.Google Scholar
  38. Holm, E., Lindgren, U., & Malmberg, G. (2000). Dynamic Microsimulation. In A.S. Fotheringham & M. Wegener (Eds.), Spatial Models and GIS: New Potential and New Models (pp. 143–165). GISDATA Series 7. London: Taylor & Francis.Google Scholar
  39. Huberman, B.A. & Glance, N.S. (1993). Evolutionary Games and Computer Simulations. Proc Natl Acad Sci USA, 90, 7716–7718.PubMedADSzbMATHCrossRefGoogle Scholar
  40. Kaelbling, L. & Rosenschein, S.J. (1990). Action and Planning in Embedded Agents. In P. Maes (Ed.), Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back (pp. 35–48). Cambridge, Mass.: The MIT Press.Google Scholar
  41. Krupp, H.-J. (1986). Potential and limitations of Microsimulation models. In G.H. Orcutt, J. Mertz, & H. Quinke (Eds.), Microanalytic Simulation Models to Support Social and Financial Study. Amsterdam, New York: North-Holland.Google Scholar
  42. Langton, C. (1986). Studying Artificial Life with Cellular Automata. In D. Farmer, A. Lapedes, N. Packard, & B. Wendroff (Eds.), Evolution, Games and Learning (pp. 120–149). Amsterdam: North-Holland.Google Scholar
  43. LeBaron, B. (2000). Agent Based Computational Finance-Suggested Readings and Early Research. Economic Dynamics and Control, 24(5–7), 679–702.zbMATHCrossRefGoogle Scholar
  44. Leontief, W.W. (1951). The Structure of the American Economy, 1919–1939: an Empirical Application of Equilibrium Analysis. New York: Oxford University Press.Google Scholar
  45. Lesser, V. (Ed.) (1995). Proc First Intl Conf on Multi-Agent Systems. San Mateo, Calif.: Morgan Kaufmann.Google Scholar
  46. Maes, P. (1991). The Agent Network Architecture (ANA), SIGART Bulletin, 2(4), 115–120.CrossRefGoogle Scholar
  47. Mas-Colell, A., Whinston, M.D., & Green, J.R. (1995). Microeconomic Theory. New York: Oxford University Press.Google Scholar
  48. Merz, J. (1991). Microsimulation-a survey of principles, developments and applications. International Journal of Forecasting, 7, 77–104.CrossRefGoogle Scholar
  49. Möhring, M. & Troitzsch, K.G. (2001). Lake Anderson Revisited by Agents. Artificial Societies and Social Simulation, 4(3). Retrieved on February 3, 2002, from
  50. Nakamura, A., Nakamura, M., & Orcutt, G.H. (1976). Testing for relationship between timeseries. Journal of the American Statistical Association, 71, 214–222.zbMATHCrossRefGoogle Scholar
  51. Newell, A. & Simon, H.A. (1961). GPS, a Program that Simulates Human Thought. In R. Billing (Ed.), Lernende Automaten (pp. 109–124). Oldenbourg.Google Scholar
  52. O’Donoghue, C. (2001). Dynamic Microsim ulation-A Methodological Survey. Brazilian Electronic Journal of Economics, 4(2), December. Retrieved on February 3, 2002, from
  53. O’Sullivan, D. & Haklay, M. (2000). Agent-Based Models and Individualism-Is the World Agent-Based? Environment and Planning A, 32, 1409–1425.Google Scholar
  54. Orcutt, G.H. (1957). A new type of socio-economic system. Review of Economics and Statistics, 58, 773–794.Google Scholar
  55. Orcutt, G.H. (1986). Views on microanalytic simulation modeling. In G.H. Orcutt, J. Mertz, & H. Quinke (Eds.), Microanalytic Simulation Models to Support Social and Financial Study. Amsterdam, New York: North-Holland.Google Scholar
  56. Orcutt, G.H. & Cochrane, D. (1949). A sampling study of the merits of the autoregressive and reduced form transformations in regression analysis. Journal of the American Statistical Association, 44, 356–372.zbMATHCrossRefGoogle Scholar
  57. Orcutt, G.H., Greenberger, M., Korbel, J., & Rivlin, A. (1961). Microanalysis of Socio-economic Systems: A Simulation Study. New York: Harper & Row.Google Scholar
  58. Orcutt, G.H., Caldwell, S., & Wertheimer II, R. (1976). Policy Exploration Through Microanalytic Simulation. Washington DC: Urban Institute.Google Scholar
  59. Parunak, H.V.D., Savit, R., & Riolo, R.L. (1998). Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users’ Guide. In Proc MABS’98 (pp. 10–25), INCS 1534. Berlin: Springer-Verlag.Google Scholar
  60. Rao, A.S. & Georgeff, M. (1995). BDI Agents-From Theory to Practice. In V. Lesser (1995), pp. 312–319.Google Scholar
  61. Rosenschein, S.J. & Kaelbling, L. (1986). The Synthesis of Digital Machines with Provable Epistemic Properties. In J.V. Halpern (Ed.), Proc Theoretical Aspects of Reasoning About Knowledge (pp. 83–98). San Mateo, Calif.: Morgan Kaufmann.Google Scholar
  62. Searle, J.R. (1969). Speech Acts-An Essay in the Philosophy of Language. Cambridge University Press.Google Scholar
  63. Shaw, A. (2000). CORSIM Analyst Documentation. Retrieved February 3, 2002, from
  64. Smith, R. (1980). The Contract Net Protocol-High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers, 29(12), 1104–1113.CrossRefGoogle Scholar
  65. Steels, L. (1990). Cooperation Between Distributed Agents through Self Organization. In Y. Demazeau & J.-P. Müller (Eds.), Decentralized AI (pp. 175–196). Amsterdam: North-Holland.Google Scholar
  66. Stone, R. (1966). Mathematics in the Social Sciences and Other Essays. London: Chapman & Hall.Google Scholar
  67. Tinbergen, J. (1939). Statistical Testing of Business Cycle Theories Vol. 2, Business Cycles in the United States of America 1919–1932. Geneva: League of Nations.Google Scholar
  68. Verhagen, H.J.E. (2000). Norm Autonomous Agents. Dissertation. Stockholm: Dept of Computer & Systems Sciences, Stockholm University.Google Scholar
  69. Wegener, M. & Spiekermann, K. (1996). The potential of microsimulation for urban models. In G.P. Clarke (Ed.), Microsimulation for Urban and Regional Policy Analysis (pp. 88–116). European Research in Regional Science 6. London: Pion.Google Scholar
  70. Wellman, M.P. (1993). A Market-Oriented Programming Environment and its Application to Distributed Multicommodity Flow Problems. Journal of Artificial Intelligence Research, 1, 1–23.zbMATHGoogle Scholar
  71. Winograd, T. & Flores, F. (1986). Understanding Computers and Cognition. Norwood NJ: Ablex Pub. Corp.zbMATHGoogle Scholar
  72. Wooldridge, M. (2000). Reasoning about Rational Agents. Cambridge, Mass., London: The MIT Press.zbMATHGoogle Scholar
  73. Wurman, P.R., Wellman, M.P., & Walsh, W.E. (1998). The Michigan Internet AuctionBot: A Configurable Auction Server for Human and Software Agents. In Proc Conf Autonomous Agents (pp. 301–308). New York: Association for Computing Machinery.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Magnus Boman
    • 1
  • Einar Holm
    • 2
  1. 1.Swedish Institute of Computer Science (SICS)KistaSweden
  2. 2.Department of Social and Economic GeographyUmeå UniversityUmeåSweden

Personalised recommendations