History of Science, History of Text pp 137-157

Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 238)

Ancient Sanskrit Mathematics: An Oral Tradition and a Written Literature

  • Pierre-Sylvain Filliozat

Abstract

The originality of India’s mathematical texts is a consequence of the refined culture of the scholars who produced them. A few examples display clearly some salient features of the habits of exposition and the methods of thought of ancient and medieval Indian mathematicians. The attitude of the traditional learned man, called “pandit”, is the same, whether he works on literary or technical matter. Propensity to orality, use of memory, brain work are his specific qualities. Composition in verse form, use of synonymous words, metaphorical expression, which are unexpected processes for the exposition of technical matter, have been the rule in all the vast Sanskrit mathematical literature. The present article analyses a technique of memorization of the text of the Vedas, the earliest exposition of geometry rules in the context of Vedic rites of building brick altars, the numeration system, the arithmetical and geometrical concept of square.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billard, R. 1971. L’astronomie indienne, investigation des textes sanskrits et des données numériques. Paris: Ecole française d’Extrême-Orient.Google Scholar
  2. Kaye, G. R. 1927. The Bakhshālī Manuscript, a Study in Mediœval Mathematics. Calcutta: Archæological Survey of India, New Imperial Series vol. xliii, pts I–II.Google Scholar
  3. Hayashi Takao 1995. The Bakhshālī Manuscript. An ancient Indian mathematical treatise. Groningen: Egbert Forsten.Google Scholar
  4. The Śulbasūtras of Baudhāyana, Āpastamba, Kātyāyana and Mānava, with Text, English Translation and Commentary, ed. S.N. Sen and A.K. Bag, New Delhi, Indian National Science Academy, 1983.Google Scholar
  5. Āryabhaṭīya of Āryabhaṭa, critically edited with Introduction, English Translation, Notes, Comments and Indexes by K.S. Shukla in collaboration with K.V. Sarma, New Delhi, Indian National Science Academy, 1976.Google Scholar
  6. Āryabhaṭīya of Āryabhaṭa with the commentary of Bhāskara I and Someśvara, critically edited with Introduction and Appendices by K.S. Shukla, New Delhi, Indian National Science Academy, 1976.Google Scholar
  7. Āryabhaṭīya of Aryabhaṭa with the commentary of Sūryadeva Yajvan, critically edited with Introduction and Appendices by K.V. Sarma, New Delhi, Indian National Science Academy, 1976.Google Scholar
  8. The Yavanajātaka of Sphujidhvaja, edited, translated and commented by David Pingree, Harvard Oriental Series 48, 1978, 2 vols.Google Scholar
  9. Filliozat, P.-S. & Mazars, G. 1987. “La terminologie et l’écriture des fractions dans la littérature mathématique sanskrite.” Bulletin d’études indiennes, no 5: 91–95. Paris: Association française pour les études sanskrites.Google Scholar
  10. Filliozat, P.-S. 1993a, “Formalisation and orality in Pāṇini’s Aṣṭadhyāyī.” Indian Journal of History of Science, 28(4). 291–301. Delhi: Indian National Science Academy.Google Scholar
  11. Filliozat, P.-S. 1993b. “Ellipsis, Lopa and Anuvrtti.” Annals of the Bhandarkar Oriental Research Institute, vols. LXXII & LXXIII: 675–687. Pune: Bhandarkar Oriental Institute.Google Scholar
  12. Filliozat, P.-S. 1997. “L’utilisation d’outils poétiques dans les mathématiques sanskrites.” Oriens — Occidens, no 1. Paris.Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Pierre-Sylvain Filliozat
    • 1
  1. 1.E.P.H.E.Paris

Personalised recommendations