Astrobiology: Future Perspectives pp 359-391

Part of the Astrophysics and Space Science Library book series (ASSL, volume 305) | Cite as

The Chemistry of the Origin of Life

  • Oliver Botta

Abstract

Astrobiology is an emerging interdisciplinary science that investigates experimentally the origin of life on the Earth and its distribution in the Universe. It encompasses scientific disciplines from astronomy to geology, chemistry, paleontology, biology and ecology with the goal to understand — to name only a few examples — the formation of solar systems (through detection of extrasolar planetary system and the exploration of our Solar system), to investigate the origin and prebiotic formation of organic compounds that could have been important for the origin of life on the Earth (including the origin of chirality), to determine the age of the oldest molecular fossils and other indicators on Earth to constrain the time for the origin of life, or to understand the complexity of the earliest organisms by phylogenetic and biochemical analysis and of modern organisms. This interdisciplinary approach is necessary to understand the implications in the different fields and to close the gaps in our knowledge, for example on the role of RNA in ancient organisms, the origin of protein biosynthesis or, in another field, the surface conditions on the early Earth. Astrobiology also has strong influences on future space missions, such as the Rosetta mission to investigate the composition of a comet, or future missions to Mars that very likely will carry instruments to search for traces of extinct or extant life on that planet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, S. L., A Production of Amino Acids under Possible Primitive Earth Conditions, Science 117, 528–529 (1953).ADSGoogle Scholar
  2. 2.
    Bada, J. L., Lazcano, A., Prebiotic Soup — Revisiting the Miller Experiment, Science 300, 745–746 (2003).CrossRefGoogle Scholar
  3. 3.
    Nisbet, E. G., Sleep, N. H., The Habitat and Nature of Early Life, Nature 409, 1083–1091 (2001).CrossRefADSGoogle Scholar
  4. 4.
    Lazcano, A., Miller, S. L., How Long Did it Take for Life to Begin and Evolve to Cyanobacteria?, J. Mol. Evol. 39, 6, 546–554 (1994).CrossRefGoogle Scholar
  5. 5.
    Cohen, B. A., Swindle, T. D., Kring, D. A., Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages, Science 290, 1754–1756 (2000).CrossRefADSGoogle Scholar
  6. 6.
    Ryder, G., Mass Flux in the Ancient Earth-Moon System and benign implications for the Origin of Life on Earth, J. Geophys. Res. 107 (E4) Art No. 5002 (2002)Google Scholar
  7. 7.
    Ryder, G., Bombardment of the Hadean Earth: Wholesome or Deleterious?, Astrobiology 3, 3–6 (2003).CrossRefADSMATHGoogle Scholar
  8. 8.
    Maher, K. A., Stevenson, D. J., Impact Frustration of the Origin of Life, Nature 331, 612–614 (1988)CrossRefADSGoogle Scholar
  9. 9.
    Wilde, S. A., Valley, J. W., Peck, W. H., Graham, C. M., Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr ago, Nature 409, 175–178 (2001).CrossRefADSGoogle Scholar
  10. 10.
    Mojzsis, S. J., Arrhenius, G. McKeegan, K. D., Harrison, T. M., Nutman, A. P., Friend, C. R. L., Evidence for Life on Earth Before 3,800 million Years Ago, Nature 384, 55–59 (1996).CrossRefADSGoogle Scholar
  11. 11.
    Fedo, C. M., Whitehouse, M. J., Metasomatic Origin of Quartz-Pyroxene Rock, Akilia, Greenland, and Implications for Earth’s Earliest Life, Science 296, 1448–1452 (2002).CrossRefADSGoogle Scholar
  12. 12.
    Van Zuilen, M. A., Lepland, A., Arrhenius, G., Reassessing the Evidence for the Earliest Traces of Life, Nature 418, 627–630 (2002).ADSGoogle Scholar
  13. 13.
    Schopf, J. W., Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life, Science 260, 640–646 (1993).ADSGoogle Scholar
  14. 14.
    Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., Czaja, A. D., Laser Raman Imagery of Earth’s Earliest Fossils, Nature 416, 73–76 (2002).CrossRefADSGoogle Scholar
  15. 15.
    Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. N., Van Kranendonk, M. J., Lindsay, J. F., Steele, A., Grassineau, N. V., Questioning the Evidence for Earth’s Oldest Fossils, 2002, Nature 416, 76–81 (2002).CrossRefADSGoogle Scholar
  16. 16.
    Brasier, M., Green, O., Lindsay, J., Steele, A., Earth’s Oldest (<3.5 Ga) Fossils and the ‘Early Eden Hypothesis’: Questioning the Evidence, Origins Life Evol. Biosphere 34, 257–269 (2004).CrossRefADSGoogle Scholar
  17. 17.
    Bada, J. L., Lazcano, A., Some Like it Hot, But Not the First Biomolecules, Science 296, 1982–1983 (2002).CrossRefGoogle Scholar
  18. 18.
    Ehrenfreund, P., Irvine, W., Becker, L., Blank, J., Brucato, J. R., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaje, H., Lazcano, A., Owen, T., Robert, F., Astrophysical and Astrochemical Insights into the Origin of Life, Rep. Prog. Phys. 65, 1427–1487 (2002).CrossRefADSGoogle Scholar
  19. 19.
    Kasting, J. F., Pavlov, A. A., Siefert, J. L., A Coupled Ecosystem-Climate Model for Predicting the Methane Concentration in the Archean Atmosphere, Origins Life Evol. Biosphere 31, 271–285 (2001).CrossRefADSGoogle Scholar
  20. 20.
    Schlesinger, G, Miller, S. L., Prebiotic Synthesis in Atmospheres Containing CH4, CO and CO2. I. Amino Acids, J. Mol. Evol. 19, 376–382 (1983).Google Scholar
  21. 21.
    Miller, S. L., The Mechanism of Synthesis of Amino Acids by Electric Discharges, Biochim. Biophys. Acta 23, 480–489 (1957).CrossRefGoogle Scholar
  22. 22.
    Miller, S. L., Schlesinger, G., Carbon and Energy Yields in Prebiotic Syntheses Using Atmospheres Containing CH4, CO and CO2, Origins Life 14, 83–90 (1984).CrossRefADSGoogle Scholar
  23. 23.
    Wächtershäuser, G., Groundworks for an Evolutionary Biochemistry: The Iron-Sulfur World, Prog. Biophys. Molec. Biochem. 58, 85–201 (1992).Google Scholar
  24. 24.
    Wächtershäuser, G., Life As We Don’t Know It, Science 289, 1307–1808 (2000).Google Scholar
  25. 25.
    Huber, C, Wächtershäuser, G., Activated Acetic Acid by Carbon Fixation on (Fe,Ni)S Under Primordial Conditions, Science 276, 245–247 (1997).CrossRefGoogle Scholar
  26. 26.
    Cody, G. D., Boctor, N. Z., Hazen, R. M., Brandes, J. A., Morowitz, H. J., Yoder, H. S., Jr., Geochemical Roots of Autotrophic Carbon Fixation: Hydrothermal Experiments in the System Citric Acid, H2O-(±FeS)-(±NiS), Geochim. Cosmochim. Acta 65, 3557–3576 (2001).ADSGoogle Scholar
  27. 27.
    Orgel, L. E., Self-Organizing Biochemical Cycles, Proc. Natl. Acad. Sci. USA 97, 12503–12507 (2000).CrossRefADSGoogle Scholar
  28. 28.
    Miller, S. L., Bada, J. L., Submarine Hot Springs and the Origin of Life, Nature 334, 609–611 (1988).ADSGoogle Scholar
  29. 29.
    Miller, S. L., Lazcano, A., The Origin of Life — Did It Occur at High Temperatures?, J. Mol. Evol. 41, 689–692 (1995).CrossRefGoogle Scholar
  30. 30.
    Levy, M., Miller, S. L., The Stability of RNA Bases: Implications for the Origin of Life, Proc. Natl. Acad. Sci USA 95, 7933–7938 (1998).ADSGoogle Scholar
  31. 31.
    Bada, J. L., Bigham, C., Miller, S. L., Impact Melting of Frozen Oceans on the Early Earth: Implications for the Origin of Life, Proc. Natl. Acad. Sci. USA 91, 1248–1250 (1994).ADSGoogle Scholar
  32. 32.
    Moulton, V., Gardner, P. P., Pointon, R. F., Creamer, L. K., Jameson, G. B., Penny, D., RNA Folding Argues Against a Hot-Start Origin of Life, J. Mol. Evol. 51, 416–421 (2000).Google Scholar
  33. 33.
    Wieland, T, Schäfer, W., Bokelmann, E., Über eine bequeme Darstellungsweise von Acylthiophenolen und ihre Verwendung zu Amid-und Peptid-Synthesen, Liebigs Ann. Chem. 573, 99–104 (1951).Google Scholar
  34. 34.
    De Duve, C. (1991), Blueprint for A Cell, Neil Patterson Publishers, Burlington, NC.Google Scholar
  35. 35.
    Ferris, J. P., Hagan, W. J., Jr., HCN and Chemical Evolution: The Possible Role of Cyano Compounds in Prebiotic Synthesis, Tetrahedron 40, 1093–1120 (1984).CrossRefGoogle Scholar
  36. 36.
    Oró, J., Synthesis of Adenine from Ammonium Cyanide, Biochem. Biophys. Res. Commun. 2, 407–412 (1960).Google Scholar
  37. 37.
    Oró, J., Kimball, A. P., Synthesis of purines under possible primitive Earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94, 217–27 (1961).Google Scholar
  38. 38.
    Levy, M., Miller, S. L., Oró, J., Production of Guanine from NH4CN Polymerization, J. Mol. Evol. 49, 165–168 (1999).CrossRefGoogle Scholar
  39. 39.
    Miyakawa, S., Cleaves, H. J., Miller, S. L., The Cold Origin of Life: A. Implications Based on the Hydrolytic Stabilities of Hydrogen Cyanide and Formamide, Origins Life Evol. Biosphere 32, 195–208 (2003).ADSGoogle Scholar
  40. 40.
    Miyakawa, S., Cleaves, H. J., Miller, S. L., The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced from Frozen Ammonium Cyanide Solutions, Origins Life Evol. Biosphere 32, 209–218 (2003).ADSGoogle Scholar
  41. 41.
    Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R., Moore, C., Evidence for Extraterrestrial Amino-Acids and Hydrocarbons in the Murchison Meteorite, Nature 228, 923–926 (1970).CrossRefADSGoogle Scholar
  42. 42.
    Cronin, J. R. and Chang, S.: 1993, Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorites, in J. M. Greenberg, C. X. Mendoza-Gomez & V. Pirronello (eds.), The Chemistry of Life’s Origin, Kluwer Academic Publishers, The Netherlands, pp. 209–258.Google Scholar
  43. 43.
    Stoks, P. G., Schwartz, A. W., Uracil in Carbonaceous Chondrites, Nature 282, 709–710 (1979).CrossRefADSGoogle Scholar
  44. 44.
    Stoks, P. G., Schwartz, A. W., Nitrogen-Heterocyclic Compounds in Meteorites: Significance and Mechanisms of Formation, Geochim. Cosmochim. Acta 45, 563–569 (1981).CrossRefADSGoogle Scholar
  45. 45.
    Shimoyama, A., Hagishita, S., Harada, K., Search for Nucleic Acid Bases in Carbonaceous Chondrites from Antarctica, Geochemical Journal 24, 343–348 (1990).Google Scholar
  46. 46.
    Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., Garrel, L., Carbonaceous Meteorites as a Source of Sugar-Related Organic Compounds for the Early Earth, Nature 414, 879–883 (2001).CrossRefADSGoogle Scholar
  47. 47.
    Botta, O., Bada, J. L., Extraterrestrial Organic Compounds in Meteorites, Surv. Geophys. 23, 411–467 (2002).CrossRefADSGoogle Scholar
  48. 48.
    Messenger, S., Amari, S., Gao, X., Walker, R. M., Clemett, S. J., Chillier, X. D. F., Zare, R. N., Lewis, R. S., Indigenous Polycyclic Aromatic Hydrocarbons in Circumstellar Graphite Grains from Primitive Meteorites, Astrophys. J. 502, 284–295 (1998).CrossRefADSGoogle Scholar
  49. 49.
    Lerner, N. R., Peterson, E., Chang, S., The Strecker Synthesis as a Source of Amino Acids in Carbonaceous Chondrites: Deuterium Retention During Synthesis, Geochim. Cosmochim. Acta 57, 4713–4723 (1993).CrossRefADSGoogle Scholar
  50. 50.
    Ehrenfreund, P., Glavin, D. P., Botta, O., Cooper, G., Bada, J. L., Extraterrestrial Amino Acids in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrties, Proc. Natl. Acad. Sci. USA 98, 2138–2141 (2001).CrossRefADSGoogle Scholar
  51. 51.
    Botta, O., Glavin, D. P., Kminek, G., Bada, J. L., Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites, Origins Life Evol. Biosphere 32, 143–163 (2002).CrossRefADSGoogle Scholar
  52. 52.
    Love, S. G., Brownlee, D. E., A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust, Science 262, 550–553 (1993).ADSGoogle Scholar
  53. 53.
    Chyba, C. F., Sagan, C., Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origins of Life, Nature 255, 125–132 (1992).ADSGoogle Scholar
  54. 54.
    Clemett, S. J., Maechling, C. R., Zare, R. N., Swan, P. D., Walker, R. M., Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles, Science 262, 721–725 (1993).ADSGoogle Scholar
  55. 55.
    Glavin, D. P. Survival of Prebiotic Organic Compounds During Exogenous Delivery. Implications for the Origin of Life on Earth and Potentially on Mars. Ph.D. Thesis, University of California, San Diego, 2001.Google Scholar
  56. 56.
    Glavin, D. P. and Bada, J. L, Survival of Amino Acids in Micrometeorites During Atmospheric Entry, Astrobiology 1, 259–269 (2001).CrossRefADSGoogle Scholar
  57. 57.
    Chyba, C. F., Thomas, P. J., Brookshaw, L. and Sagan, C. Cometary Delivery of Organic Molecules to the Early Earth. Science 249, 366–373 (1990).ADSGoogle Scholar
  58. 58.
    Zhao, M. and Bada, J. L. Extraterrestrial Amino Acids in Cretaceous/Tertiary Boundary Sediments at Stevns Klint, Denmark. Nature 339, 463–465 (1989).CrossRefADSGoogle Scholar
  59. 59.
    Pierazzo, E. and Chyba, C. F. Amino Acid Survival in Large Cometary Impacts. Meteorit. Planet. Sci. 34, 909–918 (1999).ADSGoogle Scholar
  60. 60.
    Bada, J. L., Extraterrestrial handedness?, Science 275, 942–943 (1997).CrossRefGoogle Scholar
  61. 61.
    Feringa, B. L., van Delden, R. A., Absolute Symmetric Synthesis: The Origin, Control, and Amplification of Chirality, Angew. Chem. Int. Ed. 38, 3418–3438 (1999).CrossRefGoogle Scholar
  62. 62.
    Podlech, J., Origin of Organic Molecules and Biomolecular Homochirality, Cell. Mol. Life. Sci. 58, 44–60 (2001).Google Scholar
  63. 63.
    Kondepudi, D. K., Asakura, K., Chiral Autocatalysis, Spontaneous symmetry Breaking, and Stochastic Behavior, Acc. Chem. Res. 34, 946–954 (2001).CrossRefGoogle Scholar
  64. 64.
    Sato, I., Urabe, H., Ishiguro, S., Shibata, T., Soai, K., Amplification of Chirality from Extremely Low to Greater than 99.5% ee by Asymmetric autocatalysis, Angew. Chem. Int. Ed. 42, 315–317 (2003).Google Scholar
  65. 65.
    Soai, K., Sato, I., Shibata, T., Monyia, S., Hayashi, M., Matsueda, Y., Imamura, H., Hayase, T., Morioka, H., Tabira, H., Yamamoto, J., Kowata, Asymmetric Synthesis of Pyrimidyl Alkanol without Adding Chiral Substances by the Addition of Diisopropylzinc to Pyrimidine-5-carbaldehyde in Conjunction with Asymmetric Autocatalysis, Tetrahedr. Asymm. 14, 185–188 (2003).Google Scholar
  66. 66.
    Sato, I., Urabe, H., Ishii, S., Tanji, S., Soai, K., Asymmetric Synthesis with a Chiral Catalyst Generated from Asymmetric Autocatalysis, Org. Lett. 3, 3851–3854 (2001).CrossRefGoogle Scholar
  67. 67.
    Cronin, J. R., Pizzarello, S., Enantiomeric Excesses in Meteoritic Amino Acids, Science 275, 951–955 (1997).CrossRefADSGoogle Scholar
  68. 68.
    Pizzarello, S., Zolensky, M., Turk, K. A., Nonracemic Isovaline in the Murchison Meteorite: Chiral Distribution and Mineral Association, Geochim. Cosmochim. Acta 67, 1589–1595 (2003).CrossRefADSGoogle Scholar
  69. 69.
    Engel, M. H., Macko, S. A., Isotopic Evidence for Extraterrestrial Non-Racemic Amino Acids in the Murchison Meteorite, Nature 389, 265–268 (1997).CrossRefADSGoogle Scholar
  70. 70.
    Pizzarello, S., Cronin, J. R., Non-Racemic Amino Acids in the Murray and Murchison Meteorites, Geochim. Cosmochim. Acta 64, 329–338 (2000).CrossRefADSGoogle Scholar
  71. 71.
    Bonner, W. A., Rubenstein, E., Supernovae, Neutron Stars and Biomolecular Chirality, BioSystems 20, 99–111 (1987).CrossRefGoogle Scholar
  72. 72.
    Pizzarello, S., Weber, A. L., Prebiotic Amino Acids as Asymmetric Catalysts, Science 303, 1151 (2004).CrossRefGoogle Scholar
  73. 73.
    Bolli, M., Micura, R., Eschenmoser, A., Pyranosyl-RNA: Chiroselective Self-assembly of Base Sequences by Ligative Oligomerization of Tetranucleotide-2′,3′-cyclophosphates (with a Commentary Concerning the Origin of Biomolecular Homochirality), Chem. Biol. 4, 309–320 (1997).CrossRefGoogle Scholar
  74. 74.
    Huang, W., Ferris, J. P., Synthesis of 35-40-mers of RNA Oligomers from Unblocked Monomers. A Simple Approach to the RNA World, Chem. Comm. 1458–1459 (2003).Google Scholar
  75. 75.
    Miyakawa, S., Ferris, J. P., Sequence-and Regioselectivity in the Montmorillonite-Catalyzed Synthesis of RNA, J. Am. Chem. Soc. 125, 8202–8208.Google Scholar
  76. 76.
    Ferris, J. P., Montmorillonite Catalysis of 30-50-mer Oligonucleotides: Laboratory Demonstration of Potential Steps in the Origin of the RNA World, Origins Life Evol. Biosphere 32, 311–332 (2002).CrossRefADSGoogle Scholar
  77. 77.
    Orgel, L. E., The Origin of Life — a Review of Facts and Speculations, Trends Biochem. Sci. 23, 491–495 (1998).CrossRefGoogle Scholar
  78. 78.
    Müller, D., Pitsch, S., Kittaka, A., Wagner, E., Wintner, C. E., Eschenmoser, A., Aldomerisierung von Glycoaldehy-phophaten und (in Gegenwart von Formaldehyd) Racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte, Helv. Chim. Acta 73, 1410–1468 (1990)Google Scholar
  79. 79.
    Unrau, P. J., Bartel, D. P. RNA-Catalyzed Nucleotide Synthesis, Nature 395, 260–263 (1998)ADSGoogle Scholar
  80. 80.
    Schwartz, A. W., Prebiotic Phosphorylation — Nucleotide Synthesis with Apatite, Biochim. Biophys. Acta 281, 477–480 (1972).Google Scholar
  81. 81.
    Lohrmann, R., Orgel, L. E., Prebiotic Synthesis: Phosphorylation in Aqueous Solution, Science 161, 64–66 (1968).ADSGoogle Scholar
  82. 82.
    Schwartz, A. W., van der Veen, M., Bisseling, T., Chittenden, G. J. F., Prebiotic Nucleotide Synthesis — Demonstration of a Geologically Plausible Pathway, Origins Life 6, 163–168 (1975).CrossRefADSGoogle Scholar
  83. 83.
    Eschenmoser, A. Towards a Chemical Etiology of Nucleic Acid Structure, Origins Life Evol. Biosphere 27, 535–553 (1997).CrossRefADSGoogle Scholar
  84. 84.
    Beier, M., Reck, T., Wagner, R., Krishnamurthy, R., Eschenmoser, A., Chemical Etiology of Nucleic Acid Structure: Comparing Pentopyranosyl-(2′→4′) oligonucleotides with RNA, Science 283, 699–703 (1999).CrossRefADSGoogle Scholar
  85. 85.
    Schöning, K.-U., Scholz, P., Guntha, S., Wu, X., Krishnamurthy, R., Eschenmoser, A., Chemical Etiology of Nucleic Acid Structure: The α-threofuranosyl-(3′→2′) oligonucleotide system, Science 290, 1347–1351 (2000).ADSGoogle Scholar
  86. 86.
    Egholm, M., Buchardt, O., Nielsen, P. E., Berg, R. H., Peptide Nucleic Acid (PNA). Oligonucleotide Analogues with an Achiral Peptide Backbone, J. Am. Chem. Soc. 114, 1895–1897 (1992).Google Scholar
  87. 87.
    Schmidt, J. G., Nielsen, P. E., Orgel, L. E., Information Transfer from Peptide Nucleic Acid to RNA by Template-Directed Syntheses, Nucleic Acids Res. 25, 4797–4802 (1997).Google Scholar
  88. 88.
    Nelson, K. E., Levy, M., Miller, S. L., Peptide Nucleic Acids Rather Than RNA May Have Been the First Genetic Molecules, Proc. Natl. Acad. Sci. USA 97, 3868–3871 (2000).ADSGoogle Scholar
  89. 89.
    Schmidt, J. G., Nielsen, P. E., Orgel, L. E., Enantiomeric Cross-Inhibition in the Synthesis of Oligonucleotides on a Nonchiral Template, J. Am. Chem. Soc. 119, 1494–1495 (1997).CrossRefGoogle Scholar
  90. 90.
    Buchanan J. M. (1965), Chairman’s remarks. The Origin of Prebiological Systems and of Their Molecular Matrices (Fox SW, ed.). Academic Press, New York, pp. 101–104.Google Scholar
  91. 91.
    Haldane J. B. S. (1965), Data needed for a blueprint of the first organism. The Origin of Prebiological Systems and of Their Molecular Matrices (Fox SW, ed.). Academic Press, New York, pp. 11–18.Google Scholar
  92. 92.
    Crick, F. H. C., The Origin of the Genetic Code, J. Mol. Biol. 38, 367–379 (1967).Google Scholar
  93. 93.
    Orgel, L. E., Evolution of the Genetic Apparatus, J. Mol. Biol. 38, 381–393 (1967).Google Scholar
  94. 94.
    Joyce, G. F., The Rise and Fall of the RNA World, The New Biologist 3, 399–407 (1991).Google Scholar
  95. 95.
    Gilbert, W., The RNA World, Nature 319, 618 (1986).CrossRefADSGoogle Scholar
  96. 96.
    Gesteland, R. F. & Atkins, J. F. (eds.), The RNA World. New York: Cold Spring Harbor Press, 1993.Google Scholar
  97. 97.
    Yusupov, M. M., Yusupova, G. Zh., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H. D., Noller, H. F., Crystal Structure of the Ribosome at 5.5 Å Resolution, Science 292, 883–896 (2001).CrossRefADSGoogle Scholar
  98. 98.
    Moore, P. B. & Steitz, T. A., The Involvement of RNA in Ribose Function, Nature 418, 229–235 (2002).ADSGoogle Scholar
  99. 99.
    Scott, W. G. & Klug, A., Ribozymes: Structure and Mechanism in RNA Catalysis, Trends Biochem. Sci. 21, 220–224 (1996).CrossRefGoogle Scholar
  100. 100.
    Lee, N., Bessho, Y., Wei, K., Szostak, J. W., Suga, H., Ribozyme-Catalyzed tRNA Aminoacylation, Nature Struct. Biol. 7, 28–33 (2000).Google Scholar
  101. 101.
    Tarasow, T. M, Tarasow, S. L., Eaton, B. E., RNA-Catalyzed Carbon-Carbon Bond Formation, Nature 389, 54–57 (1997).CrossRefADSGoogle Scholar
  102. 102.
    Roth, A. & Breaker, R. R., An Amino Acid as a Cofactor for a Catalytic Polynucleotide, Proc. Natl. Acad. Sci. USA 95, 6027–6032 (1998).CrossRefADSGoogle Scholar
  103. 103.
    Schimmel, P. & Kelley, S. O., Exiting an RNA World, Nature Struct. Biol. 7, 5–7 (2000).CrossRefGoogle Scholar
  104. 104.
    Kumar, R. K. & Yarus, M., RNA-Catalyzed Amino Acid Activation, Biochemistry 40, 6998–7004 (2001).Google Scholar
  105. 105.
    Zhang, B. & Cech, T. R., Peptide Bond Formation by in vitro Selected Ribozymes, Nature 390, 96–100 (1997).ADSGoogle Scholar
  106. 106.
    Schimmel, P., Giegé, R., Moras, D., Yokoyama, S., An Operational RNA Code for Amino Acids and Possible Relationship to the Genetic Code, Proc. Natl. Acad. Sci USA 90, 8763–8768 (1993).ADSGoogle Scholar
  107. 107.
    Nahvi, A., Sudarsan, N., Ebert, M. S., Zou, X., Brown, K. L., Breaker, R. R., Genetic Control by a Metabolite Binding mRNA, Chem. Biol. 9, 1043–1049 (2002).CrossRefGoogle Scholar
  108. 108.
    Woese, C., The Universal Ancestor, Proc. Natl. Acad. Sci. USA 95, 6854–6859 (1998).ADSGoogle Scholar
  109. 109.
    Forterre, P., The Origin of DNA Genomes and DNA Replication Proteins, Curr. Opinion Microbiol. 5, 525–532 (2002).Google Scholar
  110. 110.
    Dworkin, J. P., Lazcano, A., Miller, S. L., The Roads to and from the RNA world, J. Theor. Bio. 222, 127–134 (2003).Google Scholar
  111. 111.
    Szostak, J. W., Bartel, D. P., Luisi, P. L., Synthesizing Life, Nature 409, 387–390 (2001).CrossRefADSGoogle Scholar
  112. 112.
    Monnard, P.-A., Deamer, D., Membrane Self-Assembly Processes: Steps Toward the First Cellular Life, Anat. Rec. 268, 196–207 (2002).CrossRefGoogle Scholar
  113. 113.
    Deamer, D. W., Boundary Structures Are Formed by Organic Components of the Murchison Carbonaceous Chondrite, Nature 317, 792–794 (1985).CrossRefADSGoogle Scholar
  114. 114.
    Mautner, M. N., Leonard, R. L., Deamer, D. W., Meteorite Organics in Planetary Environments: Hydrothermal Release, Surface Activity, and Microbial Utilization, Planet. Space Sci. 43, 139–147 (1995).CrossRefADSGoogle Scholar
  115. 115.
    Apel, C. L., Mautner, M. N., Deamer, D. W., Self-Assembled Vesicles of Monocarboxylic acids and Alcohols: Conditions for Stability and for Encapsulation of Biopolymers, Biochim. Biophys. Acta 1559, 1–9 (2002).Google Scholar
  116. 116.
    Dworkin J. P., Deamer D. W., Sandford S. A., Allamandola L. J., Self-assembling Amphiphilic Molecules: Synthesis in Simulated Interstellar/Precometary Ices, Proc. Natl. Acad. Sci. USA 98, 815–819 (2001).CrossRefADSGoogle Scholar
  117. 117.
    Walde, P., Goto, A., Monnard, P.-A., Wessicken, M., Luisi, P. L., Oparin’s Reaction revisited: Enzymatic Synthesis of Poly(adenylic acid) in Micelles and Self-Reproducing Vesicles, J. Am. Chem. Soc. 116, 7541–7547 (1994).Google Scholar
  118. 118.
    Woese, C. R., Bacterial Evolution, Microbiol. Rev. 51, 221–271 (1987).Google Scholar
  119. 119.
    Brown, J. R., Ancient Horizontal Gene Transfer, Nature Rev: Genetics 4, 121–132 (2003).Google Scholar
  120. 120.
    Gogarten, J. P., Gene Transfer: Gene Swapping Craze Reaches Eukaryotes, Curr. Biol. 13, R53–R54 (2003).CrossRefGoogle Scholar
  121. 121.
    Gogarten, J. P., Doolittle, W. F., Lawrence, J. G., Prokaryotic Evolution in Light of Gene Transfer, Mol. Biol. Evol. 19, 226–2238 (2002).Google Scholar
  122. 122.
    Margulis, L., (1970), Origin of Eucaryotic Cells, Yale Univ. Press, New Haven, CT.Google Scholar
  123. 123.
    Doolittle, W. F., You Are What You Eat: A Gene Transfer Ratchet Could Account for Bacterial Genes in Eukaryotic Nuclear Genomes, Trends Genet. 14, 307–311 (1998).Google Scholar
  124. 124.
    Martin, W., Mosaic Bacterial Chromosomes: A Challenge En Route to a Tree of Genomes, BioEssays 21, 99–104 (1999).CrossRefGoogle Scholar
  125. 125.
    Doolittle, W. F., Phylogenetic Classification and the Universal Tree, Science 284, 2124–2128 (1999).CrossRefGoogle Scholar
  126. 126.
    Woese, C. R., On the Evolution of Cells, Proc. Natl. Acad. Sci. USA 99, 8742–8747 (2002).CrossRefADSGoogle Scholar
  127. 127.
    Daubin, V., Moran, N. A., Ochman, H., Phylogenetics and the Cohesion of Bacterial Genomes, Science 301, 829–832 (2003).CrossRefADSGoogle Scholar
  128. 128.
    Xu, Y., Glansdorff, N, Was Our Ancestor a Hyperthermophilic Prokaryote?, Comp. Biochem. Phys. A 133, 677–688 (2002).Google Scholar
  129. 129.
    Forterre, P., Philippe, H., Where Is the Root of the Universal Tree of Life?, BioEssays 21, 871–879 (1999).CrossRefGoogle Scholar
  130. 130.
    Forterre, P., Thermoreduction, a Hypothesis for the Origin of Prokaryotes, CR Acad. Sci. Paris 318, 415–422 (1995).Google Scholar
  131. 131.
    Galtier, N., Tourasse, N., Gouy, M., A Nonhyperthermophilic Common Ancestor to Extant Life Forms, Science 283, 220–221 (1999).CrossRefGoogle Scholar
  132. 132.
    Brochier, C., Philippe, H., A Non-Hyperthermophilic Ancestor for Bacteria, Nature 417, 244 (2002).CrossRefADSGoogle Scholar
  133. 133.
    Rothschild, L. J., Mancinelli, R. L., Life in Extreme Environments, Nature 409, 1092–1101 (2001).CrossRefADSGoogle Scholar
  134. 134.
    Doolittle, W. F., The Nature of the Universal Ancestor and the Evolution of the Proteome, Curr. Opinion Struct. Biol. 10, 355–358 (2000).CrossRefGoogle Scholar
  135. 135.
    Line, M. A., The Enigma of the Origin of Life and its Timing, Microbiol. 148, 21–27 (2002).Google Scholar
  136. 136.
    Luisi, P. L., About Various Definitions of Life, Origins Life Evol. Biosphere 28, 613–622 (1998).CrossRefADSGoogle Scholar
  137. 137.
    Cleland, C. E., Chyba, C. F., Defining Life, Origins Life Evol. Biosphere 32, 387–393 (2002).CrossRefADSGoogle Scholar
  138. 138.
    Eschenmoser, A., Kisakürek, M. V., Chemistry and the Origin of Life, Helv. Chim. Acta 79, 1249–1259 (1996).CrossRefGoogle Scholar
  139. 139.
    Hanczyc, M. M., Kujikawa, S. M. Szostak, J. W., Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division, Science 302, 618–622 (2003).CrossRefADSGoogle Scholar
  140. 140.
    Kashefi, K., Lovley, D. R., Extending the Upper Temperature Limit for Life, Science 301, 934 (2003).CrossRefGoogle Scholar
  141. 141.
    Kminek, G., Bada, J. L., Botta, O., Glavin, D., Grunthaner, F., MOD: An Organic Detector for Future Robotic Exploration of Mars, Planet. Space Sci. 48, 1087–1091 (2000).CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Oliver Botta
    • 1
  1. 1.Astrobiology Laboratory, Leiden Institute of ChemistryUniversity of LeidenThe Netherlands

Personalised recommendations