Advertisement

Early Life on Earth: The Ancient Fossil Record

  • Frances Westall
Part of the Astrophysics and Space Science Library book series (ASSL, volume 305)

Abstract

The evidence for early life and its initial evolution on Earth is linked intimately with the geological evolution of the early Earth. The environment of the early Earth would be considered extreme by modern standards: hot (50–80°C), volcanically and hydrothermally active, anoxic, high UV flux, and a high flux of extraterrestrial impacts. Habitats for life were more limited until continent-building processes resulted in the formation of stable cratons with wide, shallow, continental platforms in the Mid-Late Archaean. Unfortunately there are no records of the first appearance of life and the earliest isotopic indications of the existence of organisms fractionating carbon in ∼3.8 Ga rocks from the Isua greenstone belt in Greenland are tenuous. Well-preserved microfossils and microbial mats (in the form of tabular and domical stromatolites) occur in 3.5–3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Africa) and Pilbara (Australia) greenstone belts. They document life forms that show a relatively advanced level of evolution. Microfossil morphology includes filamentous, coccoid, rod and vibroid shapes. Colonial microorganisms formed biofilms and microbial mats at the surfaces of volcaniclastic and chemical sediments, some of which created (small) macroscopic microbialites such as stromatolites. Anoxygenic photosynthesis may already have developed. Carbon, nitrogen and sulphur isotopes ratios are in the range of those for organisms with anaerobic metabolisms, such as methanogenesis, sulphate reduction and photosynthesis. Life was apparently distributed widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in the early Archaean was restricted owing to the limited amount of energy that could be produced by anaerobic metabolisms. Microfossils resembling oxygenic photosynthesisers, such as cyanobacteria, probably first occurred in the later part of the Mid Archaean (∼2.9 Ga), concurrent with the tectonic development of suitable shallow shelf environments. The development of an oxygenic metabolism allowed a considerable increase in biomass and increased interaction with the geological environment.

Key words

early Earth extreme environment early habitat early life prokaryotes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, P.W.U., Moorbath, S. (1999). Exploring Earth’s oldest geological record in Greenland. EOS, 80, 257–264.ADSCrossRefGoogle Scholar
  2. Appel, P.W.U., Fedo, C.M., Moorbath, S., Myer, J.S. (1998). Recognizable primary volcanic and sedimentary features in a low-strain domain of the highly deformed, oldest known (∼3.7-3.8 Gyr) greenstone belt, Isua, West Greenland. Terra Nova, 10, 57–62.CrossRefGoogle Scholar
  3. Appel, P.W.U., Moorbath, S., Myers, J.S. (2003). Isuasphaera isua (Pflug) revisited. Precambrian Res, 126, 309–312.CrossRefGoogle Scholar
  4. Arndt, N.T. (1994). Archean komatiites, in Archean crustal evolution, ed. K.C. Condie, p. 11–44, Elsevier, Amsterdam.CrossRefGoogle Scholar
  5. Awramik, S.M., Sprinkle, J. (1999). Proterozoic stromatolites: the first marine evolutionary biota. Historical Biology, 13, 241–253CrossRefGoogle Scholar
  6. Beaumont, V., Robert, F. (1999). Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmospheric chemistry? Precambrian Res., 96, 63–82.CrossRefGoogle Scholar
  7. Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., van Kranendonk, M., Lindsay, J.F., Steele, A., Grassineau, N. (2002). Questioning the evidence for Earth’s oldest fossils. Nature, 416, 76–81.CrossRefADSGoogle Scholar
  8. Bridgewater, D., Allaart, J.H., Schopf, J.W., Kelin, C., Walter, E.S., Strother, A.H., Gorman, B.E. (1981). Microfossil-like objects from the Archaean of Greenland: a cautionary note. Nature, 289, 51–53.ADSCrossRefGoogle Scholar
  9. Brocks J.J., Logan G.A., Buick R., Summons R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1036.CrossRefGoogle Scholar
  10. Brocks, J.J. Love, G.D., Snape, C.E., Logan, G.A., Summons, R.E., Buick, R. (2003). Release of bound aromatic hydrocarbons from late Archean and Mesoarchean kerogens via hydropyrolysis. Geochim. Cosmochim. Acta., 67, 1521–1530.ADSCrossRefGoogle Scholar
  11. Buick, R., (1990). Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios, 5, 441–459.CrossRefGoogle Scholar
  12. Byerly G. R., Walsh, M.M., Lowe, D.L. (1986). Stromatolites from the 3300–3500 Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature, 319, 489–491.CrossRefADSGoogle Scholar
  13. Cady, S.L., Farmer, J.D. (1996). Fossilization processes in siliceous thermal springs: trends in preservation along the thermal gradient. In: Evolution of hydrothermal ecosystems on Earth (and Mars), ed. G.R. Bock and J.A. Goodie, Ciba Symposium 202, John Wiley, Chichester, pp 150–173.Google Scholar
  14. Cockell, C.S. (2001). A photobiological hoistory of Earth. In: Ecosystems, Evolution and Ultraviolet Radiation, eds. C.S. Cockell and A.R. Blaustein, Springer, Berlin, pp 1–35.Google Scholar
  15. de Ronde, C.E.J., Ebbesen, T.W. (1996). 3.2 billion years of organic compound formation near sea-floor hot springs. Geology, 24, 791–794.ADSCrossRefGoogle Scholar
  16. de Wit, M.J., Hart, R.A. (1993). Earth’s earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos, 30, 309–336.ADSCrossRefGoogle Scholar
  17. Des Marais, D.J. (2000). When did photosynthesis emerge on Earth? Science, 289, 1703–1705.ADSGoogle Scholar
  18. Dunlop, J.S.R., Muir, M.D., Milne, V.A., Groves, D.I. (1978). A new microfossil assemblage from the archeaen of Western Australia. Nature, 274, 676–678.CrossRefADSGoogle Scholar
  19. Farquahr, J., Bao, H., Thiessen, M. (2000). Atmospheric influence of Earth’s earliest sufur cycle. Science, 289, 756–758.ADSCrossRefGoogle Scholar
  20. Fedo, C.M. (2000). Setting and origin for problematic rocks from the > 3.7 Ga Isua Greenstone Belt, southern west Greenland: Earth’s oldest coarse sediments. Precambrian Res., 101, 69–78.CrossRefGoogle Scholar
  21. Fedo, C.M., Whitehouse, M.J. (2002). Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science, 296, 1448–1452.CrossRefADSGoogle Scholar
  22. Forterre, P., Confalonieri, F., Charbonnier, F, Duguet, M. (1995). Speculations on the origins of life and thermophily: review of available information on reverse gyrase suggests that hyperthermophilic procaryotes are not so primitive. Origins Life Evol. Biosphere, 25, 235–249.CrossRefADSGoogle Scholar
  23. Gerdes, G., Krumbein, W.E. (1987). Biolaminated deposits. In, Lecture Notes in Earth Sciences (S. Bhattacharji et al.). Springer, Berlin.Google Scholar
  24. Grotzinger, J.P. (1994). Trends in Precambrian carbonate sediments and their implication for understanding evolution. In Early life on Earth, ed. S. Bengtson, Nobel Symp. 84, Columbia Univ. Press, N.Y., pp.245–258.Google Scholar
  25. Grotzinger, J.P., Kasting, J.F. (1993). New constraints on Precambrian ocean composition. J. Geol., 101, 235–243.ADSCrossRefGoogle Scholar
  26. Han, T.-M., Runnegar, B. (1992). Megascopic eukaryotic algae from the 2.1-billion-year-olds Negaunee Iron-Formation, Michigan. Science, 257, 232–235.ADSCrossRefGoogle Scholar
  27. Hayes, J.M., Kaplan I.R., Wedeking K.W. (1983). Precambrian organic chemistry, preservation of the record. In: Earth’s earliest biosphere, ed. J.W. Schopf, p. 93–134, Princeton Univ. Press.Google Scholar
  28. Hofmann, H. J., M. Masson, (1994). Archean stromatolites from Abitibi greenstone belt, Quebec, Canada. Geol. Soc. Am. Bull., 106, p. 424–429.CrossRefGoogle Scholar
  29. Hofmann, H.J., Grey, K.,, A.H., Thorpe, R.I. (1999). Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull., 111, 1256–1262.CrossRefGoogle Scholar
  30. Holland, H. D. (1984). The chemical evolution of the atmosphere and oceans. Princeton Univ. Press, Princeton.Google Scholar
  31. Kakegawa, T. (2001). Isotopic signatures of early life in the Archean oceans: influence from submarine hydrothermal activities. In: Geochemistry and the Origin of Life, Eds. S. Nakashsima, S. Maruyama, A. Brack, and B.F. Windley, pp. 237–249., Universal Acad. Press, TokyoGoogle Scholar
  32. Kasting, J.F. (1993). Earth’s early atmosphere. Science, 259, 920–926ADSCrossRefGoogle Scholar
  33. Kempe, S. Degens, E.T. (1985). An early soda ocean? Chem. Geol., 5, 95–108.CrossRefGoogle Scholar
  34. Kirschvink, J.L. Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, l.N., Steinberge, R.E. (2000). Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. USA, 97, 1400–1495.CrossRefADSGoogle Scholar
  35. Knauth, L.P., Lowe, D.R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull., 115, 566–580.CrossRefGoogle Scholar
  36. Krumbein, W.E. (1983) Stromatolites — the challenge of a term in space and time. Precambrian Res., 20, 493–531.CrossRefGoogle Scholar
  37. Kyte, F.T., Shukolyukov, A., Lugmaor, G.W., Lowe, D.R., Byerly, G.R. (2003). Early Archean spherule beds: Chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology, 31, 283–286.CrossRefADSGoogle Scholar
  38. Lepland, A., Arrhenius, G., Cornell, D. (2002) Apatite in early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precambrian Res., 118, 221–241.CrossRefGoogle Scholar
  39. Lindsay, J.F., Brasier, M.D. (2002). Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Res., 114, 1–34.CrossRefGoogle Scholar
  40. Lowe, D.R. (1983). Restricted shallow water sedimentation of zearly Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Res., 19, 239–283.CrossRefGoogle Scholar
  41. Lowe, D. R., 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22, 287–390.Google Scholar
  42. Lowe, D.R., Byerly, G.R. (1986). Early Archean silicate spherules of probable impact origin, South Africa and Western Australia, Geology, 14, 83–86.ADSCrossRefGoogle Scholar
  43. Lowe, D.R., Byerly, G.R. (1999). Geologic evolution of the Barberton greenstone belt, South Africa. Geol. Soc. Am. Spec. Paper 329.Google Scholar
  44. Lowe, D.R., Byerly, G.R., Kyte, F.T., Shukulyukov, A., Asaro, F., Krull, A. (2003). Spherule beds 3.47–3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology, 3, 7–48.CrossRefADSGoogle Scholar
  45. Maher, K.A., Stevenson, D.J. (1988). Impact frustration of the origin of life. Nature, 331, 612–614.CrossRefADSGoogle Scholar
  46. Melosh, H.J., Vickery, A.M., Tonks, W.B. (1993) Impacts and the early environment and evolution of the terrestrial planets. In Protostars and planets III, Ed. E.H. Levt and J.L. Lunine. Univ. Arizona Press, Tucson, pp. 1339–1370.Google Scholar
  47. Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., Friend, C.R.L. (1996). Evidence for life on Earth before 3800 millio-n years ago. Nature, 384, 55–59.CrossRefADSGoogle Scholar
  48. Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature, 409, 178–181CrossRefADSGoogle Scholar
  49. Myers, J.S., (2003). Isua enigmas: illusive tectonic, sedimentary, volcanic, and organic features of the >3.8–>3.7 Ga Isua greenstone belt, Southwest Greenland. Geophys. Res. Abstracts, 5, 13823.Google Scholar
  50. Nijman, W., de Bruijne, K.H. Valkering, M. (1999). Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambrian Res., 95, 247–274.CrossRefGoogle Scholar
  51. Noffke, N., Hazen, R., Nhieko, N. (2003). Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology, 31, 673–676.CrossRefADSGoogle Scholar
  52. Nutman, A.P. (1986). The early Archaean to Proterozoic history of the Isukasia area, southern West Greenland. Greenland Geol. Surv. Bull. 154, Copenhagen.Google Scholar
  53. Ohmoto, H. (1997). Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology, 24, 1135–1138.ADSCrossRefGoogle Scholar
  54. Ohmoto, H. (1999). Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250-2750 Ma sandstones from the Pilbara craton, Australia: Comment. Geology, 27, 1151–1152.CrossRefADSGoogle Scholar
  55. Paris, I., Stanistreet, I.G., Hughes, M.J. (1985). Cherts of the Barberton greenstone belt interpreted as products of submarine exhalative activity. J. Geol., 93, 111–129.ADSCrossRefGoogle Scholar
  56. Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A., Freedman, R. (2001). Greenhouse warming by CH4 in the atmosphere of early earth. J. Geophys. Res., 105, 11981–11990.ADSCrossRefGoogle Scholar
  57. Pflug, H.D. (1979). Archean fossil finds resembling yeasts. Geol. Palaeontol., 13, 1–8.MathSciNetGoogle Scholar
  58. Pflug, H.D., (2001). Earliest organic evolution, Essay to the memory of Bartholomew Nagy. Precamb. Res., 106, 79–92.CrossRefGoogle Scholar
  59. Pflug, H.D., Jaeschke-Boyer, H. (1979). Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature, 280, 483–486.CrossRefADSGoogle Scholar
  60. Philippot, P., Foriel, J., Cauzid, J., Susini, J., Dumas, P., Somogyi, A., Khodia, H., Ménez, B., Fouquet, Y., Moreira, D., Garcia-Lopez, P. (2003). High resolution synchrotron-based imaging of sulphur oxidation states in individual microfossils and contemporary microbial filaments. Goldschmidt Conf. Abst. A379Google Scholar
  61. Pinti, D.L., Hashizume, K. (2001). 15N-depleted nitrogen in Early Archean kerogens: clues on ancient marine chemosynthetic-based ecosystems? Precambrian Res., 105, 85–88.CrossRefGoogle Scholar
  62. Pinti, D.L., Hashizume, K., Matsuda, J.-I. (2001). Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: Clues on the chemical state of the Archean ocean and the deep biosphere. Geochim. Cosmochim. Acta, 65, 2301–2315.CrossRefADSGoogle Scholar
  63. Rasmussen, B. (2000). Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature, 405, 676–679.CrossRefADSGoogle Scholar
  64. Rasmussen, B., Buick, R., Holland, H.D. (1999). Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250-2750 Ma sandstones from the Pilbara Craton, Australia: reply. Geology, 27, 1152.CrossRefGoogle Scholar
  65. Robert, F. (1988). Carbon and oxygen isotope variations in Precambrian cherts. Geochim. Cosmochim. Acta, 52, 1473–1478.CrossRefADSGoogle Scholar
  66. Robbins, E.I. (1987). Appelella ferrifera, a possible new iron-coated microfossil in the Isua Iron-Formation, Southwestern Greenland. In: Precambrian Iron Formations eds., Appel, P.W.U., LaBerge, G.L., Theophrastes, Athens, pp. 141–154.Google Scholar
  67. Robbins, E.I., Iberall, A.S. (1991). Mineral remains of early life on Earth? On Mars? Geomicrobiol. J., 9, 51–66.CrossRefGoogle Scholar
  68. Roedder, E. (1981). Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither? Nature, 293, 159–162.CrossRefGoogle Scholar
  69. Rosing M.T. (1999). 13C depleted carbon microparticles in >3700 Ma seafloor sedimentary rocks from West Greenland. Science, 283, 674–676.CrossRefADSGoogle Scholar
  70. Runnegar, B. (2002). Archean sulphates from Western Australia: implications for Early Archean atmosphere and chemistry. Goldschmidt Conf., Abstr. 3859.Google Scholar
  71. Ryder, G. (2002). Mass influx in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res., 107, 10.1029/2001JE001583.Google Scholar
  72. Ryder, G. (2003). Bombardment of the Hadean Earth: wholesome or deleterious. Astrobiology, 3, 3–6.CrossRefADSzbMATHGoogle Scholar
  73. Rye, R., Kuo, P.H., Holland, H.D. (1995). Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature, 378, 603–605.CrossRefADSGoogle Scholar
  74. Sagan, C., Mullen, G. (1972). Earth and Mars: Evolution of atmospheres and surface temperatures. Science, 177, 52–56.ADSCrossRefGoogle Scholar
  75. Sagan, C., Chyba, C. (1997). The early sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science, 276, 1217–1221.CrossRefADSGoogle Scholar
  76. Schidlowski, M. (1988). A 3800 million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–318.CrossRefADSGoogle Scholar
  77. Schidlowski, M., (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res., 106, 117–134.CrossRefGoogle Scholar
  78. Schidlowski, M., Hayes, J.M., Kaplan, I.R. (1983). Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen. In: Earth’s earliest biosphere: its origin and evolution, ed. Schopf, J.W., Princeton Univ. Press, Princeton, pp. 149–186.Google Scholar
  79. Schopf, J.W. (1993). Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science, 260, 640–646.ADSCrossRefGoogle Scholar
  80. Schopf, J.W., Walter, M.R. (1983). Archean microfossils: new evidence of ancient microbes, in Earth’s earliest biosphere, ed. J.W. Schopf, p.214–239, Princeton Univ. Press, Princeton.Google Scholar
  81. Schopf, J.W., Packer, B.M. (1987). Early Archean (3.3 billionto 3.5 billion-year-old) microfossils from Warawoona Group, Australia. Science, 237, 70–73.ADSCrossRefGoogle Scholar
  82. Shen, Y., Buick, R., Canfield, D.E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81.CrossRefADSGoogle Scholar
  83. Sleep, N.H., Zahnle, K.J., Kasting, J.F., Morowitz, H.J. (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142.CrossRefADSGoogle Scholar
  84. Sonett, C.P., Kvale, E.P., Zarkharian, A., Chan, M.A., Demko T.M. (1996). Late Proterozoic and Paleozoic tides, retreat of the Moon, and rotation of the Earth Science 273, pp. 100–104.ADSCrossRefGoogle Scholar
  85. Strauss, H., Moore, T.B. (1992). Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In: The Proterozoic Biosphere: A multidisciplinary study, Eds. J.W. Schopf, J.W., C. Klein, p.709–798, Camdridge Univ. Press, Cambridge.Google Scholar
  86. Summons R.E., Jahnke L.L., Hope J.M., Logan J.H. (1999). 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–7.CrossRefADSGoogle Scholar
  87. Touret, J. (2003). Remnants of early Archaean hydrothermal methane and brines in pillowbreccia from the Isua Greenstone Belt, West Greenland. Precambrian Res., 126, 219–233.CrossRefGoogle Scholar
  88. Ueno, Y., Maruyama, S., Isozaki, Y., Yurimoto, H., (2001a). Early Archean (ca. 3.5 Ga) microfossils and 13C-depleted carbonaceous matter in the North Pole area, Western Australia: Field occurrence and geochemistry. In: Geochemistry and the Origin of Life, Eds. S. Nakashsima, S. Maruyama, A. Brack, and B.F. Windley, p. 203–236, Universal Acad. Press, TokyoGoogle Scholar
  89. Ueno, Y., Isozaki, Y., Yurimoto, H., Maruyama, S. (2001b). Carbon isotope signatures of individual Archean microfossils (?) from Western Australia. Intl. Geology Review, 43, 196–212.CrossRefGoogle Scholar
  90. Ueno, Y., Yoshioka, H., Maruyama, S., Isozaki, Y. (2001c). Carbon and nitrogen isotope geochemistry of kerogen-rich ssilica dikes in the ca. 3.5 Ga North Pole area, Western Australia: sub-seafloor biosphere in the Archean. International Archean Symposium extended abstracts, K.F. Cassidy, J.N. Dunphy, and M.J. van Kranendonk (Eds.), AGSO-Geoscience Australia 2001/37, 99–101.Google Scholar
  91. Ueno, Y., Yurimoto, H., Yoshioka, H., Komiya, T., Matuyama, S. (2002). Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua suprcrustal belt, West Greenland: relationship between metamorphism and carbon isotope composition. Geochim. Cosmochim. Acta, 66, 1257–1268.CrossRefADSGoogle Scholar
  92. Van Kranendonk, Webb, G.E. Kamber, B.S. (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and bogenicity of 3.45 Ga carbonates in the Pilbara, and support for a reducing Archean ocean. Geobiology, 1, 91–108.CrossRefGoogle Scholar
  93. Van Zuilen, M., Lepland, Arrhenius, G. (2002). Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630.ADSCrossRefGoogle Scholar
  94. Veizer, J. (1994). The Archean-Proterozoic transition and its environmental implications. In: Early life on Earth, ed. S. Bengtson, Nobel Symp. 84, Columbia Univ. Press, N.Y., pp. 208–219.Google Scholar
  95. Walsh, M.M. (1992). Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res., 54, 271–293.CrossRefADSGoogle Scholar
  96. Walsh, M.M., Lowe, D.R. (1999). Modes of accumulation of carbonaceous matter in the early Archaean: A petrographic and geochemical study of carbonaceous cherts from the Swaziland Supergroup. In: Geologic evolution of the Barberton greenstone belt, South Africa, eds. DR. Lowe, G.R. Byerly, Geol. Soc. Am Spec. Paper, 329, 115–132,.Google Scholar
  97. Walsh, M.M., Westall, F. (2003). Archean biofilms preserved in the 3.2—3.6 Ga Swaziland Supergroup, South Africa. In Fossil and Recent Biofilms (ed. W.E. Krumbein, T. Dornieden, and M. Volkmann), Kluwer, Amsterdam, in press.Google Scholar
  98. Walter, M.R. (1976). Stromatolites, Springer verlag, Berlin.Google Scholar
  99. Walter, M. R. (1983). Archean stromatolites: evidence of the Earth’s earliest benthos. In, Earth’s Earliest Biosphere (J. W. Schopf, eds.). Princeton University Press, Princeton. p. 187–213.Google Scholar
  100. Westall, F. (1999). The nature of fossil bacteria. J. Geophys. Res., 104, 16,437–16,451.CrossRefADSGoogle Scholar
  101. Westall, F. (2003a). The geological context for the origin of life and the mineral signatures of fossil life. In The Early Earth and the origin of Life, H. Martin, M. Gardaud, G. Reisse, B. Barbier (Eds). Springer, Berlin, in press.Google Scholar
  102. Westall, F. (2003b). Stephen Jay Gould, les procaryotes et leur évolution dans le contexte géologique. Palevol, 2, 485–501.CrossRefGoogle Scholar
  103. Westall, F., Gerneke, D. (1998). Electron microscope methods in the search for the earliest life forms on Earth (in 3.5-3.3 Ga cherts from the Barberton greenstone belt, South Africa): applications for extraterrestrial studies. SPIE: Instruments, Methods and Missions for Astrobiology, 3441, 158–169.ADSGoogle Scholar
  104. Westall, F., Walsh, M.M. (2000). The diversity of fossil microorganisms in Archaean-age rocks. In, Journey to Diverse Microbial Worlds, Ed. J. Seckbach, Kluwer, Amsterdam, 15–27.Google Scholar
  105. Westall, F., Walsh, M.M. (2003). Fossil biofilms and the search for life on Mars. In Fossil and Recent Biofilms, eds. W.E. Krumbein, D. Patterson, G. Zavarzin, Kluwer, Amsterdam, in press.Google Scholar
  106. Westall, F., Folk, R.L. (2003). Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: Implications for the search for life in ancient rocks. Precambrian Res., 126, 313–330.CrossRefGoogle Scholar
  107. Westall, F., De Wit, M.J., Walsh, M.M., Folk, R.L., Chafetz, H., Gibson, E.K. (1999). An Early Archean, organic carbon-rich microbialite (3.3–3.4 Ga) from the Barberton greenstone belt. South Africa. Intl. Soc. Study of the Origin of Life (ISSOL), Abstr.Google Scholar
  108. Westall, F., Steele, A., Toporski, J. Walsh, M., Allen, C., Guidry, S., Gibson, AE., Mckay, D., Chafetz, H., (2000). Polymeric substances and biofilms as biomarkers in terrestrial materials: Implications for extraterrestrial samples. J. Geophys. Res. Planets., 105, 24,511–24,527.CrossRefADSGoogle Scholar
  109. Westall, F., De Wit, M.J., Dann, J., Van Der Gaast., S., De Ronde., C., Gerneke., D., (2001). Early Archaean fossil bacteria and biofilms in hydrothermally-influenced, shallow water sediments, Barberton greenstone belt, South Africa. Precambrian Res., 106, 93–116.CrossRefGoogle Scholar
  110. Westall, F., Brack, A., Barbier, B., Bertrand, M., Chabin, A. (2002). Early Earth and early life: an extreme environment and extremophiles — application to the search for life on Mars. Proceedings of the Second European Workshop on Exo/Astrobiology Graz, Austria, 16–19 September 2002, ESA SP-518, pp. 131–136.Google Scholar
  111. Westall, F., Hofmann, B, Brack, B. (2004). Searching for fossil microbial biofilms on Mars: a case study using a 3.46 billion-year old example from the Pilbara in Australia. Proceedings of the Third European Workshop on Exo/Astrobiology Madrid, Spain 18–20 2003 ESA Spec. Pub. 545, in press.Google Scholar
  112. Wiegel, J., Adams, M.W. (1998). Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor & Francis, N.Y.Google Scholar
  113. Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–178.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Frances Westall
    • 1
  1. 1.Centre de Biophysique MoleculaireCNRSOrléans Cedex 02France

Personalised recommendations