The Prebiotic Atmosphere of the Earth

  • Franck Selsis
Part of the Astrophysics and Space Science Library book series (ASSL, volume 305)


Because of the paucity of geologic samples dating back to the early Earth, trying to unveil the nature of the prebiotic terrestrial environment is as frustrating as it is fascinating. An understanding of the characteristics of this period in our planet’s history is, however, crucial to studies of the origin of Life. Recent progress in astrophysics, geochemistry and simulation of planetary accretion provide some new and precious constraints but also question some of the previously admitted “facts”. The aim of this chapter is to highlight some of the important open-ended questions about the environment of the prebiotic Earth (for a more comprehensive review, see Kasting and Catling, 2003). The implications of recent theories of terrestrial planets formation on the origin and early evolution of the atmosphere are discussed, in particular, along with the various influences of our faint but active young Sun during this period.


early Earth primitive atmosphere young Sun origins of life 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage, P. J., Clarke, C. J., and Palla, F. (2003). Dispersion in the lifetime and accretion rate of T Tauri discs. MNRAS, 342:1139–1146.CrossRefADSGoogle Scholar
  2. Armstrong, J. C., Wells, L. E., and Gonzalez, G. (2002). Rummaging through Earth’s Attic for Remains of Ancient Life. Icarus, 160:183–196.CrossRefADSGoogle Scholar
  3. Bada, J. L., Bigham, C., and Miller, S. L. (1994). Impact melting of frozen oceans on the early Earth: Implications for the origin of life. Proc. Natl. Acad. Sci., 91:1248–1250.ADSCrossRefGoogle Scholar
  4. Baraffe, I., Chabrier, G., Allard, F., and Hauschildt, P. H. (1998). Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. A&A, 337:403–412.ADSGoogle Scholar
  5. Baross, J. A. and Hoggman, S. E. (1985). Submarine Hydrothermal Vents and Associated Gradient Environments as Sites for the Origin and Evolution of Life. Origins of Life, 15:327.ADSCrossRefGoogle Scholar
  6. Beichman, C. A., Woolf, N. J., and Lindensmith, C. A., editors (1999). The Terrestrial Planet Finder (TPF): a NASA Origins program to search for habitable planets. JPL Publications.Google Scholar
  7. Brasier, M., Green, O., Lindsay, J., and Steele, A. (2004). Earth’s Oldest (3.5 Ga) Fossils and the ‘Early Eden Hypothesis’: Questioning the Evidence. Origins of Life and Evolution of the Biosphere, 34:257–269.CrossRefADSGoogle Scholar
  8. Brasseur, G. and Solomon, S. (1984). Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and mesosphere. Dordrecht, D. Reidel Publishing Co., 1984, 457 p.Google Scholar
  9. Canup, R. M. and Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth’s formation. Nat, 412:708–712.CrossRefADSGoogle Scholar
  10. Carslaw, K. S., Harrison, R. G., and Kirkby, J. (2002). Cosmic Rays, Clouds, and Climate. Science, 298:1732–1737.CrossRefADSGoogle Scholar
  11. Chambers, J. E. (2001). Making More Terrestrial Planets. Icarus, 152:205–224.CrossRefADSGoogle Scholar
  12. Chambers, J. E. and Wetherill, G. W. (1998). Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions. Icarus, 136:304–327.CrossRefADSGoogle Scholar
  13. Chen, G. Q. and Ahrens, T. J. (1997). Erosion of terrestrial planet atmosphere by surface motion after a large impact. Physics of the Earth and Planetary Interiors, 100:21–26.CrossRefADSGoogle Scholar
  14. Chyba, C. F. (1987). The cometary contribution to the oceans of primitive Earth. Nat, 330:632–635.ADSCrossRefGoogle Scholar
  15. Commeyras, A., Boiteau, L., Vandenabeele-Trambouze, O., and Selsis, F. (2004a). Peptide Emergence, Evolution and Selection on the Primitive Earth. II. The Primary Pump Scenario. In Adv. Astrobiology and Biogeophysics Series, in press, Springer.Google Scholar
  16. Commeyras, A., Taillades, J., Collet, H., Boiteau, L., Vandenabeele-Trambouze, O., Pascal, R., Rousset, A., Garrel, L., Rossi, J., Biron, J., Lagrille, O., Plasson, R., Souaid, E., Danger, G., Selsis, F., Dobrijvic, M., and Martin, H. (2004b). Dynamic Co-evolution of Peptides and Chemical Energetics, a Gateway to the Emergence of Homochirality and the Catalytic Activity of Peptides. Origins of Life and Evolution of the Biosphere, 34:35–55.CrossRefADSGoogle Scholar
  17. Crowley, T. J. (1983). The geologic record of climatic change. Rev. Geophys. Space Phys., 21:828–877.CrossRefADSGoogle Scholar
  18. Dauphas, N. (2003). The dual origin of the terrestrial atmosphere. Icarus, 165:326–339.CrossRefADSGoogle Scholar
  19. Dauphas, N. and Marty, B. (2002). Inference on the nature and the mass of Earth’s late veneer from noble metals and gases. J. Geophys. Res., 107:12–1.CrossRefGoogle Scholar
  20. Delsemme, A. H. (2000). 1999 Kuiper Prize Lecture: Cometary Origin of the Biosphere. Icarus, 146:313–325.CrossRefADSGoogle Scholar
  21. Genda, H. and Abe, Y. (2003). Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus, 164:149–162.CrossRefADSGoogle Scholar
  22. Guinan, E. F. and Ribas, I. (2002). Our Changing Sun: The Role of Solar Nuclear Evolution and Magnetic Activity on Earth’s Atmosphere and Climate. In ASP Conf. Ser. 269: The Evolving Sun and its Influence on Planetary Environments, page 85.Google Scholar
  23. Halliday, A. N. (2004). Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nat, 427:505–509.CrossRefADSGoogle Scholar
  24. Hunten, D. M., Donahue, T. M., Walker, J. C. G., and Kasting, J. F. (1989). Escape of atmospheres and loss of water. In Origin and Evolution of Planetary and Satellite Atmospheres, pages 386–422.Google Scholar
  25. Kasting, J. F. and Catling, D. (2003). Evolution of a Habitable Planet. ARA&A, 41:429–463.ADSCrossRefGoogle Scholar
  26. Kasting, J. F. and Grinspoon, D. H. (1991). The faint young Sun problem. In The Sun in Time, pages 447–462. Univ. Arizona Press.Google Scholar
  27. Kleine, T., Mnker, C., Mezger, K., and Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nat, 418:952–955.CrossRefADSGoogle Scholar
  28. Knauth, L. P. and Lowe, D. R. (1978). Oxygen isotope geochemistry of cherts from the Onverwatch Group (3.4 billion years), Traansval Group, South Africa, with implications for secular variations in the isotopic composition of cherts. J. Geol., 41:209–222.Google Scholar
  29. Kouchi, A., Kudo, T., Nakano, H., Arakawa, M., Watanabe, N., Sirono, S., Higa, M., and Maeno, N. (2002). Rapid Growth of Asteroids Owing to Very Sticky Interstellar Organic Grains. ApJ Lett., 566:L121–L124.ADSCrossRefGoogle Scholar
  30. Lammer, H., Selsis, F., Penz, T., Amerstorfer, U. V., Lichtenegger, H. I. M., Kolb, C., and Ribas, I. (2004). Atmospheric evolution and the history of water on Mars. In Water on Mars, pages 25–44. Springer.Google Scholar
  31. Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Bauer, S. J., and Weiss, W. W. (2003). Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating. ApJ Lett., 598:L121–L124.ADSCrossRefGoogle Scholar
  32. Levison, H. F., Lissauer, J. J., and Duncan, M. J. (1998). Modeling the Diversity of Outer Planetary Systems. AJ, 116:1998–2014.CrossRefADSGoogle Scholar
  33. Libourel, G., Marty, B., and Humbert, F. (2003). Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity. Geochim. Cosmochim. Acta, 67:4123–4135.CrossRefADSGoogle Scholar
  34. Lunine, J. I., Chambers, J., Morbidelli, A., and Leshin, L. A. (2003). The origin of water on Mars. Icarus, 165:1–8.CrossRefADSGoogle Scholar
  35. Lyo, A.-R., Lawson, W. A., Mamajek, E. E., Feigelson, E. D., Sung, E., and Crause, L. A. (2003). Infrared study of the ? Chamaeleontis cluster and the longevity of circumstellar discs. MNRAS, 338:616–622.CrossRefADSGoogle Scholar
  36. Maher, K. A. and Stevenson, D. J. (1988). Impact frustration of the origin of life. Nat, 331:612–614.CrossRefADSGoogle Scholar
  37. Makino, J., Fukushige, T., Funato, Y., and Kokubo, E. (1998). On the mass distribution of planetesimals in the early runaway stage. New Astronomy, 3:411–416.CrossRefADSGoogle Scholar
  38. Marty, B. and Dauphas, N. (2003a). “Nitrogen isotopic compositions of the present mantle and the Archean biosphere” Reply to comment by P. Cartigny and M. Ader. Earth Planet. Sci. Lett., 216:433–439.CrossRefADSGoogle Scholar
  39. Marty, B. and Dauphas, N. (2003b). The nitrogen record of crust-mantle interaction and mantle convection from Archean to Present. Earth Planet. Sci. Lett., 206:397–410.CrossRefADSGoogle Scholar
  40. Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., and Friend, C. R. L. (1996). Evidence for life on Earth before 3,800 million years ago. Nat, 384:55–59.CrossRefADSGoogle Scholar
  41. Monnard, P., Apel, C. L., Kanavarioti, A., and Deamer, D. W. (2002). Influence of Ionic Inorganic Solutes on Self-Assembly and Polymerization Processes Related to Early Forms of Life: Implications for a Prebiotic Aqueous Medium. Astrobiology, 2:139.CrossRefADSGoogle Scholar
  42. Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B., and Cyr, K. E. (2000). Source regions and time scales for the delivery of water to Earth. Meteoritics and Planetary Science, 35:1309–1320.ADSCrossRefGoogle Scholar
  43. Morbidelli, A., Petit, J.-M., Gladman, B., and Chambers, J. (2001). A plausible cause of the late heavy bombardment. Meteoritics and Planetary Science, 36:371–380.ADSCrossRefGoogle Scholar
  44. Napier, W. M. (2004). A mechanism for interstellar panspermia. MNRAS, 348:46–51.CrossRefADSGoogle Scholar
  45. Navarro-Gonzalez, R., McKay, C. P., and Nna Mvondo, D. (2001). A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nat, 412:61–64.ADSCrossRefGoogle Scholar
  46. Oberbeck, V. and Fogelman, G. (1989). Impacts and the origin of life. Nat, 339:434.CrossRefADSGoogle Scholar
  47. Owen, T. C. and Bar-Nun, A. (2001). Contributions of Icy Planetesimals to the Earth’s Early Atmosphere. Origins of Life and Evolution of the Biosphere, 31:435–458.CrossRefADSGoogle Scholar
  48. Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A., and Freedman, R. (2000). Greenhouse warming by CH 4 in the atmosphere of early Earth. J. Geophys. Res., 105:11981–11990.CrossRefADSGoogle Scholar
  49. Pinti, D. L., Hashizume, K., and Matsuda, J.-i. (2001). Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: clues on the chemical state of the archean ocean and the deep biosphere. Geochim. Cosmochim. Acta, 65:2301–2315.CrossRefADSGoogle Scholar
  50. Raymond, S. N., Quinn, T., and Lunine, J. I. (2004). Making other Earths: Dynamical simulations of terrestrial planets formation and water delivery. Icarus, 168:1–17.CrossRefADSGoogle Scholar
  51. Ryder, G. (2003). Bombardment of the Hadean Earth: Wholesome or Deleterious? Astrobiology, 3:3.CrossRefADSzbMATHGoogle Scholar
  52. Rye, R., Kuo, P. H., and Holland, H. D. (1995). Atmospheric carbon dioxide concentrations before 2.2 billions years ago. Nat, 378:603–605.CrossRefADSGoogle Scholar
  53. Sackmann, I.-J. and Boothroyd, A. I. (2003). Our Sun. V. A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars. ApJ, 583:1024–1039.CrossRefADSGoogle Scholar
  54. Sagan, C. and Mullen, G. (1972). Earth and Mars: Evolution of atmospheres and surface temperature. Science, 177:52–56.ADSCrossRefGoogle Scholar
  55. Schrag, D. P., Berner, R. A., Homan, P. F., and Halverson, G. P. (2002). On the initiation of a snowball Earth. Geochemistry, Geophysics, Geosystems, page 1.Google Scholar
  56. Sekine, Y., Sugita, S., Kadono, T., and Matsui, T. (2003). Methane production by large iron meteorite impacts on early Earth. J. Geophys. Res., page 6.Google Scholar
  57. Selsis, F. (2002). Occurrence and detectability of O 2-rich atmosphere in circumstellar “habitable zones”. In ASP Conf. Ser. 269: The Evolving Sun and its Influence on Planetary Environments.Google Scholar
  58. Selsis, F., Despois, D., and Parisot, J.-P. (2002). Signature of life on exoplanets: Can Darwin produce false positive detections? A&A, 388:985–1003.CrossRefADSGoogle Scholar
  59. Shaviv, N. J. (2003). Toward a solution to the early faint Sun paradox: A lower cosmic ray flux from a stronger solar wind. J. Geophys. Res., page 1437.Google Scholar
  60. Shock, E.L., Amend, J.P., and Zolotov, M.Y. (2000). The Early Earth vs. the Origin of Life. In Origin of the Earth and Moon, pages 527–543. University of Arizona Press.Google Scholar
  61. Sleep, N.H. and Zahnle, K. (2001). Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res., 106:1373–1400.CrossRefADSGoogle Scholar
  62. Sleep, N. H., Zahnle, K., and Neuho, P. S. (2001). Initiation of clement conditions on the earliest Earth. PNAS, 98:3666–3672.CrossRefADSGoogle Scholar
  63. Turcotte, D. L., Morein, G., Roberts, D., and Malamud, B. D. (1999). Catastrophic Resurfacing and Episodic Subduction on Venus. Icarus, 139:49–54.CrossRefADSGoogle Scholar
  64. Valley, J. W., Peck, W. H., King, E. M., and Wilde, S. A. (2002). A cool Early Earth. Geology, 30:351–354.CrossRefADSGoogle Scholar
  65. Volonte, S., Laurance, R., Whitcomb, G., Karlsson, A., Fridlund, M., Ollivier, M., Gondoin, P., Guideroni, B., Granato, G. L., Amils, R., and Smith, M. (2000). Darwin: the infrared space interferometer. Technical report, ESA.Google Scholar
  66. Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981). A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res., 86:9776–9782.ADSCrossRefGoogle Scholar
  67. Weidenschilling, S. J. and Cuzzi, J. N. (1993). Formation of planetesimals in the solar nebula. In Protostars and Planets III, pages 1031–1060.Google Scholar
  68. Wells, L. E., Armstrong, J. C., and Gonzalez, G. (2003). Reseeding of early earth by impacts of returning ejecta during the late heavy bombardment. Icarus, 162:38–46.CrossRefADSGoogle Scholar
  69. Whitmire, D. P., Doyle, L. R., Reynolds, R. T., and Matese, J. J. (1995). A slightly more massive young Sun as an explanation for warm temperatures on early Mars. J. Geophys. Res., 100:5457–5464.ADSCrossRefGoogle Scholar
  70. Wiechert, U., Halliday, A. N., Lee, D.-C., Snyder, G. A., Taylor, L. A., and Rumble, D. (2001). Oxygen Isotopes and the Moon-Forming Giant Impact. Science, 294:345–348.CrossRefADSGoogle Scholar
  71. Wilde, S. A., Valley, J. W., Peck, W. H., and Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nat, 409:175–178.CrossRefADSGoogle Scholar
  72. Wood, B. E., Mller, H., Zank, G. P., and Linsky, J. L. (2002). Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity. ApJ, 574:412–425.CrossRefADSGoogle Scholar
  73. Zahnle, K. (1998). Origins of Atmospheres. In ASP Conf. Ser. 148: Origins, pages 364–391.Google Scholar
  74. Zahnle, K. and Sleep, N. H. (1997). Impacts and the early evolution of life. In Comets and the origin and evolution of life, pages 175–208. Springer New York.Google Scholar
  75. Zhang, Y. and Zindler, A. (1993). Distribution and evolution of carbon and nitrogen in Earth. Earth and Planetary Science Letters, 117:331–345.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Franck Selsis
    • 1
  1. 1.Centro de Astrobiología (CSIC-INTA)MadridSpain

Personalised recommendations