Learning to Reason About Distribution

  • Arthur Bakker
  • Koeno P. E. Gravemeijer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakker, A. (2003). The early history of average values and implications for education. Journal of Statistics Education, 11(1). Online: http://www.amstat.org/publications/jse/v11n1/bakker.html
  2. Biehler, R (2001). Developing and assessing students’ reasoning in comparing statistical distributions in computer-supported statistics courses. In C. Reading (Ed.), Proceedings of the Second International Research Forum on Statistical Reasoning, Thinking, and Literacy (SRTL-2). Armidale, Australia: University of New England.Google Scholar
  3. Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students’ construction of global views of data and data representations. Educational Studies in Mathematics, 45(1), 35–65.CrossRefGoogle Scholar
  4. Cobb, P. (1999). Individual and collective mathematical development: The case of statistical data analysis. Mathematical Thinking and Learning, 1(1), 5–43.CrossRefGoogle Scholar
  5. Cobb, P., McClain, K., & Gravemeijer, K. P. E. (2003). Learning about statistical covariation. Cognition and Instruction 21(1), 1–78.CrossRefGoogle Scholar
  6. Cobb, P., & Whitenack, J. W. (1996). A method for conducting longitudinal analyses of classroom videorecordings and transcripts. Educational Studies in Mathematics, 30(3), 213–228.CrossRefGoogle Scholar
  7. de Lange, J., Burrill, G., Romberg, T., & van Reeuwijk, M. (1993). Learning and testing mathematics in context: The case—data visualization. Madison, WI: University of Wisconsin, National Center for Research in Mathematical Sciences Education.Google Scholar
  8. Edelson, D. C. (2002). Design research: What we learn when we engage in design. Journal of the Learning Sciences, 11(1), 105–121.MathSciNetCrossRefGoogle Scholar
  9. Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  10. Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, 32(2), 124–158.CrossRefGoogle Scholar
  11. Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. Utrecht, The Netherlands: CD Bèta Press.Google Scholar
  12. Hancock, C., Kaput, J. J., & Goldsmith, L. T. (1992). Authentic enquiry with data: Critical barriers to classroom implementation. Educational Psychologist, 27(3), 337–364.CrossRefGoogle Scholar
  13. Konold, C., & Higgins, T. (2002). Highlights of related research. In S. J. Russell & D. Schifter & V. Bastable (Eds.), Developing mathematical ideas: Working with data (pp. 165–201). Parsippany, NJ: Seymour.Google Scholar
  14. Konold, C., Robinson, A., Khalil, K., Pollatsek, A., Well, A. D., & Wing, R., et al. (2002). Students’ use of modal clumps to summarize data. In B. Phillips (Ed.), Developing a Statistically Literate Society: Proceedings of the International Conference on Teaching Statistics [CD-ROM], Cape Town, South Africa, July 7–12, 2002.Google Scholar
  15. Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. In M. Anderson, A. Sáenz-Ludlow, S. Zellweger, & V. V. Cifarelli (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 215–234). Ottawa, Ontario: Legas Publishing.Google Scholar
  16. Meira, L. (1995). Microevolution of mathematical representations in children’s activity. Cognition and Instruction, 13(2), 269–313.CrossRefGoogle Scholar
  17. Mokros, J., & Russell, S. J. (1995). Children’s concepts of average and representativeness. Journal for Research in Mathematics Education, 26(1), 20–39.CrossRefGoogle Scholar
  18. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.Google Scholar
  19. Petrosino, A. J., Lehrer, R., & Schauble, L. (2003). Structuring error and experimental variation as distribution in the fourth grade. Mathematical Thinking and Learning, 5(2&3), 131–156.CrossRefGoogle Scholar
  20. Sfard, A. (2000). Steering (dis)course between metaphors and rigor: Using focal analysis to investigate an emergence of mathematical objects. Journal for Research in Mathematics Education, 31(3), 296–327.CrossRefGoogle Scholar
  21. Steinbring, H. (1997). Epistemological investigation of classroom interaction in elementary mathematics teaching. Educational Studies in Mathematics, 32(1), 49–92.CrossRefGoogle Scholar
  22. Strauss, A. & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA: Sage.Google Scholar
  23. Wilkinson, L. (1999). Dot plots. American Statistician, 53(3), 276–281.Google Scholar
  24. Zawojewski, J. S., & Shaughnessy, J. M. (2000). Mean and median: Are they really so easy? Mathematics Teaching in the Middle School, 5(7), 436–440.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Arthur Bakker
    • 1
  • Koeno P. E. Gravemeijer
    • 1
  1. 1.Freudenthal InstituteUtrecht Universitythe Netherlands

Personalised recommendations