Advertisement

An Object Oriented Library for Evolution Programs

with Applications for Partitioning of Finite Element Meshes
  • Jarosław Żola
  • Łukasz Łaciński
  • Roman Wyrzykowski
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 117)

Abstract

In this paper we present an object oriented library for evolution programs, developed at the Technical University of Czestochowa. The presented package contains number of C++ classes which allow to create various data structures and algorithms for evolutionary computations. This library supports optimized kernel and flexible user interface. Its main features are illustrated by the example of application to the problem of mesh partitioning.

Keywords

evolutionary programs mesh partitioning object oriented programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Burghardt, L. Laemmer, U. Meissner, Parallel adaptive mesh generation, Advances in Computational Mechanics with Parallel and Distributed Processing, Saxe-Coburg Publ., Edinburgh, 1997, pp. 45–51.Google Scholar
  2. [2]
    P. Coad, E. Yourdon, Object-Oriented Design, Prentice Hall, Inc., 1991.Google Scholar
  3. [3]
    D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.Google Scholar
  4. [4]
    G.R. Harik, F.G. Lobo and D.E. Goldberg, The compact genetic algorithm, Tech. Report 97006, Univ. of Illinois at Urbana Champaign, 1997.Google Scholar
  5. [5]
    B. Hendrickson, T.G. Kolda, Graph partitioning models for parallel computing, Parallel Computing, vol. 26, 2000, pp. 1519–1534.CrossRefMathSciNetGoogle Scholar
  6. [6]
    L. Lacinski, R. Wyrzykowski, J. Kaniewski, Parallel Meshing Algorithm for Finite Element Modeling, Proc. Int. Workshop on Parallel Numerics — ParNum 2000, Bratislava, Slovakia, 2000, pp. 117–124.Google Scholar
  7. [7]
    K.E. Mathias and D. Whitley, Transforming the search space with Gray coding, in: IEEE Conf. on Evolutionary Computation, vol. 1, 1994, pp. 513–518.Google Scholar
  8. [8]
    Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin, 1996.Google Scholar
  9. [9]
    B.L. Miller and D.E. Goldberg, Genetic algorithms, tournament selection, and the effects of noise, Tech. Report 95006, Univ. of Illinois at Urbana Champaign, 1995.Google Scholar
  10. [10]
    D.R. Musser, G.J. Derge and A. Saini, STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library, Addison-Wesley, 2001.Google Scholar
  11. [11]
    B.H. Topping and A.I. Khan, Parallel Finite Element Computations, Saxe-Coburg Publ., Edinburgh, 1996.Google Scholar
  12. [12]
    R. Wyrzykowski, N. Sczygiol, T. Olas and J. Kanevski, Parallel finite element modeling of solidification process, Lect. Notes in Comp. Sci., vol. 1557, 1999, pp. 183–195.Google Scholar
  13. [13]
    J. Zola, R. Wyrzykowski and L. Lacinski, Using genetic algorithms for mesh smoothing and partitioning, Proc. 5th Conf. on Neural Networks and Soft Computing, Zakopane, Poland, 2000, pp. 663–668, 2000.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jarosław Żola
    • 1
  • Łukasz Łaciński
    • 1
  • Roman Wyrzykowski
    • 1
  1. 1.Institue of Computer and Information SciencesTechnical University of CzestochowaCzestochowaPoland

Personalised recommendations