Advertisement

Uncertainty in Eddy Covariance Flux Estimates Resulting from Spectral Attenuation

  • William Massman
  • Robert Clement
Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL, volume 29)

Abstract

Surface exchange fluxes measured by eddy covariance tend to be underestimated as a result of limitations in sensor design, signal processing methods, and finite flux-averaging periods. But, careful system design, modern instrumentation, and appropriate data processing algorithms can minimize these losses, which, if not too large, can be estimated and corrected using any of several different approaches. No flux-correction method is perfect, however, so methodological uncertainties are inevitable. This study addresses the uncertainties in surface flux measurements that have been corrected for spectral attenuation with the transfer function approach. The sources of the errors in the estimates of flux attenuation examined here include the (flux-averaging) period-to-period variablity of cospectra, the departure of real cospectra from presumed smooth curves, the inherent variability in maximum frequency (f x ) of the frequency weighted cospectra, and possible imprecision in instrument related time constants. A method is proposed to estimate the uncertainty resulting from combining these effects. Also included in this study are a general mathematical relationship to describe spectra or cospectra, comparisons of observed cospectra for cospectral similarity, and discussions about including high-pass filters (associated with the flux-averaging procedures) when accounting for low frequency losses.

Keywords

Eddy Covariance Sonic Anemometer Closed Path Open Path Inertial Subrange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., Laitat, E.: 2001, ‘Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes’, Agric. For. Meteorol. 108, 293–315.CrossRefGoogle Scholar
  2. Auble, D. L., Meyers, T. P.: 1992, ‘An open path, fast response infrared absorption gas analyzer for H2O and CO2’, Bound.-Layer Meteorol. 59, 243–256.CrossRefGoogle Scholar
  3. Aydin, I.: 1998, ‘Evaluation of fluctuating pressure measured with connection tubes’, J. Hydraulic Engineering 124, 413–418.Google Scholar
  4. Busch, N. E.: 1973, ‘Turbulent transfer in the atmospheric surface layer’, In: (Ed.) Haugen, DA, Workshop on Micrometeorology, American Meteorological Society, Boston, 1–28.Google Scholar
  5. Coleman, H. W., Steele, W. G.: 1999, Experimentation and Uncertainty Analysis for Engineers. John Wiley, New York, 275 pp.Google Scholar
  6. Cook, R. K., Bedard, A. J.: 1971, ‘On the measurement of infrasound’, Geophysical Journal Royal Astronomical Society 26, 5–11.Google Scholar
  7. Finnigan, J. J., Clement, R., Mahli, Y., Leuning, R., Cleugh, H. A.: 2003, ‘A re-evaluation of long-term flux measurement techniques: Part 1. Averaging and coordinate rotation’, Bound.-Layer Meteorol. 107, 1–48.CrossRefGoogle Scholar
  8. Goulden, M. L., Daube, B. C., Fan, S.-M., Sutton, D. J., Bazzaz, A., Munger, J. W., Wofsy, S. C.: 1997, ‘Physiological response of a black spruce forest to weather’, J. Geophys. Res. 102, 28,987–28,996.CrossRefGoogle Scholar
  9. Gurvich, A. S.: 1962, ‘The pulsation spectra of the vertical component of the wind velocity and their relations to micrometeorological conditions’ Izvestiya Atmospheric Oceanic Physics 4, 101–136.Google Scholar
  10. Hicks, B. B.: 1972, ‘Propellor anemometers as sensors of atmospheric turbulence’, Bound.-Layer Meteorol. 3, 214–228.Google Scholar
  11. Hicks, B. B., McMillen, R. T.: 1988, ‘On the measurement of dry deposition using imperfect sensors and in non-ideal terrain’, Bound.-Layer Meteorol. 42, 79–84.Google Scholar
  12. Højstrup, J.: 1993, ‘A statistical data screening procedure’ Measurement Science Technology 4, 153–157.Google Scholar
  13. Holman, J. P.: 2001, Experimental Methods for Engineers. 7th Edition. McGraw-Hill, Boston, MA, 698 pp.Google Scholar
  14. Horst, T. W.: 1973, ‘Spectral transfer functions for a three-component sonic anemometer’, J. Appl. Meteorol. 12, 1072–1075.CrossRefGoogle Scholar
  15. Horst, T. W.: 1997, ‘A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors’, Bound.-Layer Meteorol. 82, 219–233.CrossRefGoogle Scholar
  16. Horst, T. W.: 2000, ‘On frequency response corrections for eddy covariance flux measurements’, Bound.-Layer Meteorol. 94, 517–520.CrossRefGoogle Scholar
  17. Horst, T. W., Oncley, S. P., Semmer, S. R.: 1997, ‘Measurement of water vapor fluxes using capacitance RH sensors and cospectral similarity’, In: 12th Symposium on Boundary Layers and Turbulence, American Meteorological Society, Boston, 360–361.Google Scholar
  18. Iberall, A. S.: 1950, ‘Attenuation of oscillatory pressures in instrument lines’, Journal Research National Bureau Standards 45, 85–108.Google Scholar
  19. Kaimal, J. C., Clifford, S. F., Lataitis, R. J.: 1989, ‘Effect of finite sampling on atmospheric spectra’, Bound.-Layer Meteorol. 47, 337–347.CrossRefGoogle Scholar
  20. Kaimal, J. C., Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows — Their Structure and Measurement. Oxford University Press, New York, NY, 289 pp.Google Scholar
  21. Kaimal, J. C., Kristensen, L.: 1991, ‘Time series tapering for short data samples’, Bound.-Layer Meteorol. 57, 187–194.CrossRefGoogle Scholar
  22. Kaimal, J. C., Wyngaard, J. C., Haugen, D. A.: 1968, ‘Spectral characteristics of surface-layer turbulence’, Quart. J. R. Meteorol. Soc. 98, 563–589.Google Scholar
  23. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., Coté, O. R.: 1972, ‘Spectral characterístics of surface-layer turbulence’, Quart. J. R. Meteorol. Soc. 98, 563–589.CrossRefGoogle Scholar
  24. Katul, G. G., Hsieh, C. I.: 1999, ‘A note on the flux-variance similarity relationship for heat and water vapor in the unstable atmospheric surface layer’, Bound.-Layer Meteorol. 90, 327–338.CrossRefGoogle Scholar
  25. Koprov, B. M., Sokolov, D. Y.: 1973, ‘Spatial correlation functions of velocity and temperature components in the surface layer of the atmosphere’, Izvestiya Atmospheric Oceanic Physics 4, 178–182.Google Scholar
  26. Kristensen, L., Mann, J., Oncley, S. P., Wyngaard, J. C.: 1997, ‘How close is close enough when measuring scalar fluxes with displaced sensors’, J. Atmos. Oceanic Technol. 14, 814–821.CrossRefGoogle Scholar
  27. Laubach, J., McNaughton, K. G.: 1999, ‘A spectrum-independent procedure for correcting eddy fluxes measured with separated sensors’, Bound.-Layer Meteorol. 89, 445–467.Google Scholar
  28. Laubach, J., Teichmann, U.: 1996, ‘Measuring energy budget components by eddy correlation: Data corrections and application over low vegetation’, Beitrüage Physik Atmosphüre, 69, 307–320.Google Scholar
  29. Lee, X., Black, T. A.: 1994, ‘Relating eddy correlation sensible heat flux to horizontal sensor separation in the unstable atmospheric surface layer’, J. Geophys. Res. 99, 18,545–18,553.Google Scholar
  30. Massman, W. J.: 1991, ‘The attenuation of concentration fluctuations in turbulent flow through a tube’, J. Geophys. Res. 96, 15,269–15,273.Google Scholar
  31. Massman, W. J.,: 2000, ‘A simple method for estimating frequency response corrections for eddy covariance systems’, Agric. For. Meteorol. 104, 185–198.CrossRefGoogle Scholar
  32. Massman, W. J.: 2001, ‘Replyto comment by Rannik on “A simple method for estimating frequency response corrections for eddy covariance systems”’, Agric. For. Meteorol. 107, 247–251.CrossRefGoogle Scholar
  33. Massman, W. J., Lee, X.: 2002, ‘Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges’, Agric. For. Meteorol. 113, 121–144.CrossRefGoogle Scholar
  34. Mestayer, P. G., Larsen, S. E., Fairall, C. W., Edson, J. B.: 1990, ‘Turbulence sensor dynamic calibration using real-time spectral computations’, J. Atmos. Oceanic Technol. 7, 841–851.CrossRefGoogle Scholar
  35. Moncrie, J., Massheder, J., Verhoef, A., Elbers, J., Heusinkveld, B., Scott, S. L., DeBruin, H. A. R., Kabat, P., Soegaard, H., Jarvis, P.: 1997, ‘A system to measure Surface fluxes of momentum, sensible heat, water vapour and carbon dioxide’, J. Hydrol. 188, 589–611.Google Scholar
  36. Moore, C. J.: 1986, ‘Frequency response corrections for eddy correlation systems’, Bound.-Layer Meteorol. 37, 17–35.CrossRefGoogle Scholar
  37. Nishiyama, R. T., Bedard, A. J.: 1991, ‘A “Quad-Disc” static pressure probe for measurement in adverse atmospheres: With a comparative review of static pressure probe designs’, Review Scientific Instruments 62, 2193–2204.Google Scholar
  38. Press, W. H., Teutkolsky, S. A., Vetterling, W. T., Flannery, B. P.: 1992, Numerical Recipes, Second Edition, Cambridge University Press.Google Scholar
  39. Rannik, Ü.: 2001, ‘A comment on the paper by W.J. Massman “A simple method for estimating frequency response corrections for eddy covariance systems”’ Agric. For. Meteorol. 107, 241–245.CrossRefGoogle Scholar
  40. Rannik, Ü., Vesala, T.: 1999, ‘Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method’, Bound.-Layer Meteorol. 91, 259–280.CrossRefGoogle Scholar
  41. Sakai, R. K., Fitzjarrald, D. R., Moore, K. E.: 2001, ‘Importance of low-frequency contributions to eddy fluxes observed over rough surfaces’, J. Appl. Meteorol. 40, 2178–2192.CrossRefGoogle Scholar
  42. Scarborough, J. B.: 1966, Numerical Mathematical Analysis, 6th Edition, The Johns Hopkins Press, Baltimore.Google Scholar
  43. Silverman, B. A.: 1968, ‘The e ect of spatial averaging on spectrum estimation’ J. Appl. Meteorol. 7, 168–172.CrossRefGoogle Scholar
  44. Spanier, J., Oldham, K. B.: 1987, An Atlas of Functions, Springer-Verlag, Berlin, 700 pp.Google Scholar
  45. Verma, S. B., Ullman, F. G., Billesbach, D., Clement, R. J., Kim, J.: 1992, ‘Eddy correlation measurements on methane flux in a northern peatland ecosystem’ Bound.-Layer Meteorol. 58, 289–304.CrossRefGoogle Scholar
  46. Vickers, D., Mahrt, L.: 1997, ‘Quality control and flux sampling problems for tower and aircraft data’, J. Atmos. Oceanic Technol. 14, 512–526.CrossRefGoogle Scholar
  47. Villalobos, F. J.: 1996, ‘Correction to eddy covariance water vapor flux using additional measurements of temperature’, Agric. For. Meteorol. 88 77–83.Google Scholar
  48. Webb, E. K., Pearman, G. I., Leuning, R.: 1980, ‘Correction of flux measurements for density e ects due to heat and water vapor transfer’, Quart. J. R. Meteorol. Soc. 106, 85–106.CrossRefGoogle Scholar
  49. Wilczak, J. M., Oncley, S. P., Stage, S. A.: 2001, ‘Sonic anemometer tilt correction algorithms’, Bound.-Layer Meteorol. 99, 127–150.CrossRefGoogle Scholar
  50. Wyngaard, J. C.: 1971, ‘Spatial resolution of a resistance wire temperature sensor’, Physics of Fluids 14, 2052–2054.CrossRefGoogle Scholar
  51. Wyngaard, J. C., Siegel, A., Wilczak, J. M.: 1994, ‘On the response of a turbulent-pressure probe and the measurement of pressure transport’, Bound.-Layer Meteorol. 69, 379–396.CrossRefGoogle Scholar

Copyright information

© U.S. Government 2004

Authors and Affiliations

  • William Massman
  • Robert Clement

There are no affiliations available

Personalised recommendations