Time-Dependent Wavepacket Calculations for Reactive Scattering and Photodissociation

  • Gabriel G. Balint-Kurti
  • Alex Brown
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 145)

Abstract

The theory of time-dependent wavepaeket calculations of reactive scattering and photodissociation is briefly reviewed and some illustrative results presented. Particular attention will be paid to the theory of differential scattering cross sections, arising from both types of process, and to the symmetry of angular dependent scattering in a photodissociation process. Electronically non-adiabatic processes will be discussed and illustrations from the reactive scattering of O(1D) + H2 and from the photodissociation of HF are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holler, E.J. (1978) Quantum corrections to clasical photodissociation models, J. Chem. Phys. 68, 2066–2075.Google Scholar
  2. 2.
    Kulander, K.C. and Heller. E.J. (1978) Time-dependent formulation of polyatomic photofragmentation: Application to H+3, J. Chem. Phys. 69, 2439–2449.Google Scholar
  3. 3.
    Heller, E.J. (1981) A semiclassical way to molecular spectroscopy, Acc. Chem. Res. 14, 368–375.Google Scholar
  4. 4.
    Balint-Kurti, G.G. (1975) The theory of rotationally inelastic collisions, in A.D. Buckingham and C.A. Coulson (eds.), International Review of Science, Series II, Vol 1, Butterworths, London, pp.286–326.Google Scholar
  5. 5.
    R. Kosloff, R. (1988) Time-dependent quantum-mechanical methods for molecular dynamics, J. Phys. Chem. 92, 2087–2100.Google Scholar
  6. 6.
    Kosloff, D. and Kosloff, R. (1983) A Fourier method solution for the time-dependent Schrödinger equation as a tool in molecular-dynamics, J. Comput. Phys. 52. 35–53.CrossRefGoogle Scholar
  7. 7.
    Tal-Ezor, H. and Kosloff, R. (1984) An accurate and efficient scheme for propagating the time-dependent Schrödinger equation., J. Chem. Phys. 81, 3967–3971.Google Scholar
  8. 8.
    Kosloff, R. and Kosloff, D. (1986) Absorbing boundaries for wave-propagation problems, J. Comput. Phys. 63, 363–376.CrossRefGoogle Scholar
  9. 9.
    Imre, D., Kinsey, J.L., Sinha, A., and Krenos, J. (1984) Chemical dynamics studied by emission spectroscopy of dissociating molecules, J. Phys. Chem. 88, 3956–3964.CrossRefGoogle Scholar
  10. 10.
    Untch, A., Weide, K., and Schinke, R. (1985) The direct photodissociation of CINO(S1): An exact three-dimensional wave packet analysis, J. Chem. Phys. 95, 6496–6507.Google Scholar
  11. 11.
    Dixon, R.N., Marston, C.C., and Balint-Kurti, G.G. (1990) Photodissociation dynamics and emission spectroscopy of H2S in its first absorption band: A time dependent quantum mechanical study, J. Chem. Phys. 93, 6520–6534.CrossRefGoogle Scholar
  12. 12.
    Le Quéré, F. and Leforestier, C. (1991) Hyperspherical formulation of the photodissociation of ozone, J. Chem. Phys. 94, 1118–1126.Google Scholar
  13. 13.
    Neuhauser, D., Baer, M., Judson, R..S. and Kouri, D.J. (1989) Time-dependent three-dimensional body frame quantal wave packet treatment of the H + H2 exchange reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface, J. Chem. Phys. 90, 5882–5884.CrossRefGoogle Scholar
  14. 14.
    Neuhauser, D., Baer, M., Judson, R.S. and Kouri, D.J. (1990) Time-dependent (wavepacket) quantum approach to reactive scattering: Vibrationally resolved reaction probabilities for F + H2 → HF + H, Chem. Phys. Lett. 169, 372–379.CrossRefGoogle Scholar
  15. 15.
    Gögtas, F., Balint-Kurti, G.G. and Offer, A.R. (1996) Quantum mechanical three-dimensional wavepacket study of the Li + HF → LiF + H reaction, J. Chem. Phys. 104, 7927–7939.Google Scholar
  16. 16.
    Gray, S.K. and Wozny, C.E. (1991) Fragmentation mechanisms from three-dimensional wave packet studies: Vibrational predissoeiation of NeCl2. HcCl2. Nc-ICl, and HeICl, J. Chem. Phys. 94, 2817–2832.CrossRefGoogle Scholar
  17. 17.
    Gray, S.K. (1992) Wavepacket dynamics of resonance decay: An iterative equation approach with application to HCO → H + CO, J. Chem. Phys. 96, 6543–6554.CrossRefGoogle Scholar
  18. 18.
    Guo, H. (1993) Time-dependent quantum dynamical study of the photodissociation of hypochlorous acid, J. Phys. Chem. 97, 2602–2608.CrossRefGoogle Scholar
  19. 19.
    Xu, D.G., Xie, D.Q. and Guo, H. (2002) Theoretical study of HCN/DCN in their first absorption bands, J. Chem. Phys. 116, 10626–10635.Google Scholar
  20. 20.
    Woywod, C., Stengle, M., Domcke, W., Flothmann, H. and Schinke, R. (1997) Photodissociation of ozone in the Chappuis band. I. Electronic structure calculations, J. Chem. Phys. 107, 7282–7295.CrossRefGoogle Scholar
  21. 21.
    Flothmann, H., Beck, C., Schinke, R., Woywod. C. and Domcke, W. (1997) Photodissociation of ozone in the Chappuis band. II. Time-dependent wave-packet calculations and interpretation of diffuse vibrational structures, J. Chem. Phys. 107, 7296–7313.Google Scholar
  22. 22.
    Flothmann, H., Schinke, R., Woywod, C. and Domcke, W. (1998) Photodissociation of ozone in the Chappuis band. III. Product state distributions. J. Chem. Phys. 109. 2680–2684.Google Scholar
  23. 23.
    Fillion, J.H., van Harrevelt, R., Ruiz, J., Castillejo, N., A.H. Zanganeh, A.H., J.L. Lemaire, J.L., M.C. van Hemert, M.C. and F. Rostas, F. (2001) Photodissociation of H2O and D2O in the \( \tilde B,\tilde C,\) and \( \tilde D\) states (134–119 nm). Comparison between experiment and ab initio calculations, J. Phys. Chem. A 105, 11414–11424.CrossRefGoogle Scholar
  24. 24.
    Harich. S.A., Yang, X.F., Yang, X, van Harrevelt, R. and van Hemert, M.C. (2001) Single rotational product propensity in the photodissociation of HOD. Phys. Rev. Lett. 87, 263001-1–263001-4.Google Scholar
  25. 25.
    van Harrevelt, R. and van Hemert, M.C. (2001) Photodissociation of water in the à band revisited with new potential energy surfaces, J. Chem. Phys. 114, 9453–9462.Google Scholar
  26. 26.
    Dixon, R.N., Hwang, D.W., Yang, X.F., Harich, S.A., Lin, J.J. and Yang, X.M. (1999) Chemical “double slits”: Dynamical interference of photodissociation pathways in water, Science 285, 1249–1253.CrossRefGoogle Scholar
  27. 27.
    Harich, S.A., Hwang, D.W.H., Yang, X.F., Lin, J.J., Yang, X.M. and Dixon, R.N. (2000) Photodissociation of H2O at 121.6 nm: A state-to-state dynamieal picture, J. Chem. Phys. 113, 10073–10090.CrossRefGoogle Scholar
  28. 28.
    Harich, S.A., Yang, X.F., Hwang, D.W.H., Lin, J.J., Yang, X.M. and Dixon, R.N. (2001) Photodissociation of D2O at 121.6 nm: A state-to-state dynamical picture, J. Chem. Phys. 114, 7830–7837.CrossRefGoogle Scholar
  29. 29.
    Kroes, G.J., van Hemert, M.C., Billing, G.D. and Neuhauser, D. (1997) Photodissociation of CH2. VI. Three-dimensional quantum dynamics of the dissociation through the coupled 2A“ and 3A” states, J. Chem. Phys. 107, 5757–5770.Google Scholar
  30. 30.
    Kosloff, R. and Cerjan, C. (1984) Dynamical atom/surface effects: Quantum mechanical scattering and desorption, J. Chem. Phys. 81, 3722–3729.CrossRefGoogle Scholar
  31. 31.
    Leforestier, C., Bisseling, R., Cerjan, C., Feit, M.D., Friesner, R., Guldberg, A., Hammerich, A., Jolicard, G., Karrlein, W., Meyer, H.-D., Lipkin, N., Roncero, O. and Kosloff, R. (1991) A comparison of different propagation schemes for the time-dependent Schrödinger equation, J. Comp. Phys. 94, 59–80.Google Scholar
  32. 32.
    Truong, T.N., Tanner, J.J., Bala, P., McCammon, J.A., Kouri, D.J., Lesyng, B. and Hoffman, D.K. (1992) A comparative study of time dependent quantum mechanical wave packet evolution methods, J. Chem. Phys. 96, 2077–2084.Google Scholar
  33. 33.
    Balint-Kurti, G.G., Wavepacket theory of photodissociation and reactive scattering, Adv. Chem. Phys., (in press).Google Scholar
  34. 34.
    Brown, A. and Balint-Kurti, G.G. (2000) Spin-orbit branching in the photodissociation of HF and DF. I. A time-dependent wave packet study for excitation from v =0, J. Chem. Phys. 113, 1870–1878.Google Scholar
  35. 35.
    Pauling, L. and Wilson, E.B. (1935) Introduction to Quantum Mechanics, McGraw-Hill, New York.Google Scholar
  36. 36.
    Herzberg, G. (1950) Molecular spectra and molecular structure, Vol. 1, Spectra of Diatomic molecules, Van Nostrand, Princeton.Google Scholar
  37. 37.
    Schiff, L.I. (1955) Quantum Mechanics, McGraw-Hill, New York.Google Scholar
  38. 38.
    Shapiro, M. and Bersohn, R. (1982) Theories of the dynamics of photodissociation, Ann. Rev. Phys. Chem. 33, 409–442.CrossRefGoogle Scholar
  39. 39.
    Balint-Kurti, G.G. and Shapiro, M. (1981) Photofragmentation of triatomic molecules: Theory of angular and state distribution of product fragments, Chem. Phys. 61, 137–155.CrossRefGoogle Scholar
  40. 40.
    Beswick, J.A. (1993) Molecular Photofragmentation, in G. Delgado-Barrio (ed.), Dynamical Processes in Molecular Physics, Institute of Physics Publishing, Bristol.Google Scholar
  41. 41.
    Balint-Kurti, G.G., Dixon, R.N. and Marston, C.C. (1992) Grid methods for solving the Schrödinger equation and time dependent quantum dynamics of molecular photofragmentation and reactive scattering processes, Internat. Rev. Phys. Chem. 11 317–344.Google Scholar
  42. 42.
    Levine, R.D. (1969) Quantum Mechanics of Molecular Rate Processes, Clarendon, Oxford.Google Scholar
  43. 43.
    Balint-Kurti, G.G., Füsti-Molár, L. and Brown, A. (2001) Photodissociation of HOBr: Part II. Calculation of photodissociation cross-sections and photofragment quantum state distributions for the first two UV absorption bands, Phys. Chem. Chem. Phys. 3, 702–710.CrossRefGoogle Scholar
  44. 44.
    Edmonds, A.R. (1960) Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton.Google Scholar
  45. 45.
    Zare, R.N. (1988) Angular Momentum understanding spatial aspects in chemistry and physics, John Wiley and Sons New York.Google Scholar
  46. 46.
    Pe’er, A., Shapiro, M. and Balint-Kurti, G.G. (1999) The breaking of forwardbackward symmetry in the angular distribution of mj-selected photofragments, J. Chem. Phys. 110, 11928–11935.Google Scholar
  47. 47.
    Rama Krishna, M.V. and Coalson, R.D. (1988) Dynamic aspects of electronic exci tation, Chem. Phys. 120, 327–333.CrossRefGoogle Scholar
  48. 48.
    Meijer, A.J.H.M. and Goldfield, E.M. (2001) Time-dependent quantum mechanical calculations on H + O2 for total angular momentum J ¿ 0: Comparing different dynamical approximations, Phys. Chem. Chem. Phys. 3, 2811–2818.Google Scholar
  49. 49.
    Offer, A.R. and Balint-Kurti, G.G. (1994) Time-dependent quantum meachanical study of the photodissociation of HOCI and DOCI, J. Chem. Phys. 101, 10416–10428.CrossRefGoogle Scholar
  50. 50.
    Heller, E.J. (1978) Photofragmentation of symmetric triatomic molecules: Time dependent picture, J.Chem.Phys. 68, 3891–3896.Google Scholar
  51. 51.
    Sun, Y., and Kouri, D.J. (1988) Wave packet study of gas phase atom-rigid rotor scattering, J. Chem. Phys. 89, 2958–2964.Google Scholar
  52. 52.
    Sun, Y., Judson, R.S., and Kouri, D.J. (1989) Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions, J. Chem. Phys. 90, 241–250.CrossRefGoogle Scholar
  53. 53.
    Gray, S.K. and Wozny, C.E. (1989) Wave packet dynamics of van der Waals molecules: Fragmentation of NeCI2 with three degrees of freedom, J. Chem. Phys. 91, 7671–7684.Google Scholar
  54. 54.
    Weide, K., Kühl, K. and Schinke, R. (1989) Unstable periodic orbits, recurrences, and diffuse vibrational structures in the photodissociation of water near 128 nm, J. Chem. Phys. 91, 3999–4008.Google Scholar
  55. 55.
    Light, J.C., Hamilton, I.P. and Lill, V.J. (1985) Generalized discrete variable approximation in quantum meachnics, J. Chem. Phys. 82, 1400–1409.CrossRefGoogle Scholar
  56. 56.
    Balint-Kurti, G.G., Dixon, R.N. and Marston, C.C. (1990) Time-dependent quantum dynamics of photofragmentation processes, J. Chem. Soc. Faraday Trans.2 86, 1741–1749. Eq. (3) of this reference should be multiplied by 1/(4π) and Eq. (25) by 1/(16π2).Google Scholar
  57. 57.
    Brown, A. and Balint-Kurti, G.G. (2000) Spin-orbit branching in the photodissociation of HF and DF: II. A time-dependent wave packet study of vibrationally mediated photodissociation, J. Chem. Phys. 113, 1879–1884.Google Scholar
  58. 58.
    Regan, P.M., Ascenzi, D., Brown, A., Balint-Kurti, G.G. and Orr-Ewing, A.J. (2000) Ultraviolet photodissociation of HCI in selected rovibrational states: Experiment and theory, J. Chem. Phys. 112, 10259–10268.CrossRefGoogle Scholar
  59. 59.
    Balint-Kurti, G.G., Orr-Ewing, A.J., Beswick, J.A., Brown, A. and Vasyutinskii, O.S. (2002) Vector correlations and alignment parameters in the photodissociation of HF and DF, J. Chem. Phys. 116, 10760–10768.CrossRefGoogle Scholar
  60. 60.
    Rakitzis, T.P., Samartzis, P.C., Toomes, R.L., Kitsopoulos, T.N., Brown, A., Balint-Kurti, G.G., Vasyutinskii, O.S. and Beswick, J.A. (2003) Spin-polarized hydrogen atoms from molecular photodissociation, Science 300, 1936–1938.CrossRefGoogle Scholar
  61. 61.
    Zhang, J., Riehn, C.W., Dulligan, M. and Wittig, C. (1996) An experimental study of HF photodissociation: Spin-orbit branching ratio and infrared alignment, J. Chem. Phys. 104, 7027–7035.Google Scholar
  62. 62.
    Baer, M. (1985) The General Theory of Reactive Scattering: The Differential Equation Approach, in M. Baer (ed.). Theory of Chemical Reaction Dynamics. Vol.I, CRC Press, Inc., Boca Raton, pp.91–161.Google Scholar
  63. 63.
    Lester, Jr., W.A. (1976) The N Coupled-Channel Problem, in W.H. Miller (ed.). Dynamics of Molecular Collisions, Part A, Plenum Press, New York, pp.1–80.Google Scholar
  64. 64.
    Clary, D.C. (ed.) (1986) The Theory of Chemical Reaction Dynamics, Reidel, Dordrecht.Google Scholar
  65. 65.
    Karplus, M. and Tang, K.T. (1967) Quantum-Mechanical Study of H + H2 Reactive Scattering, Disc. Faraday Soc. 44, 56–67.Google Scholar
  66. 66.
    Miller, W.H. (1968) Distorted-Wave Theory for Collisions of an Atom and a Diatomic Molecule, J. Chem. Phys. 49, 2373–2381.Google Scholar
  67. 67.
    Wolken, Jr.., G. and Karplus, M. (1974) Theoretical Studies of H + H2 Reactive Scattering, J. Chem. Phys. 60, 351–367.Google Scholar
  68. 68.
    Schatz, G.C. and Kuppermann, A. (1976) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory, J. Chem. Phys. 65, 4642–4667; Schatz, G.C. and Kuppermann, A. (1976) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65, 4668–4692.Google Scholar
  69. 69.
    Kuppermann, A. (1981) in D. Henderson (ed.), Theoretical Chemistry, Vol.6, Part A; Theory of Scattering: Papers in Honour of Henry Eyring, Academic Press, New York, p.79.Google Scholar
  70. 70.
    Light, J.C. and Walker. R.B. (1976) An R matrix approach to the solution of coupled equations for atom-molecule reactive scattering, J. Chem. Phys. 65, 4272–4282.Google Scholar
  71. 71.
    Halavee, U. and Shapiro, M. (1976) A collinear analytic model for atom-diatom chemical reactions, J. Chem. Phys. 64, 2826–2839.CrossRefGoogle Scholar
  72. 72.
    Baer, M. (1976) Adiabatic and diabatic representations for atom-diatom collisions: Treatment of the three-dimensional case, Chem. Phys. 15, 49–57.CrossRefGoogle Scholar
  73. 73.
    Kouri, D.J. (1985) The General Theory of Reactive Scattering: The Integral Equation Approach, in M. Baer (ed.). Theory of Chemical Reaction Dynamics, CRC Press, Inc., Boca Raton, pp. 163–225.Google Scholar
  74. 74.
    Child, M.S. (1967) Measurable consequences of a dip in the activation barrier for an adiabatic chemical reaction, Molec. Phys. 12, 401–416.Google Scholar
  75. 75.
    Connor, J.N.L. (1968) On the analytic description of resonance tunnelling reactions, Molec. Phys. 15, 37–46.Google Scholar
  76. 76.
    D’Mello, M., Manolopoulos, D.E. and Wyatt, R.E. (1991) Quantum dynamics of the H + D2 → D + HD reaction: Comparison with experiment, J. Chem. Phys. 94, 5985–5993.Google Scholar
  77. 77.
    Launay, J.M. and le Dourneuf, M. (1989) Hyperspherical close-coupling calculations of integral cross sections for the reactions H + H2 → H2 + H, Chem. Phys. Lett. 163, 178–188.CrossRefGoogle Scholar
  78. 78.
    Clary, D.C. (1994) Four-atom reaction dynamics, J. Phys. Chem. 98, 10678–10688.CrossRefGoogle Scholar
  79. 79.
    Pack, R.T. and Parker, G.A. (1987) Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory, J. Chem. Phys. 87, 3888–3921.Google Scholar
  80. 80.
    Truhlar, D.G., Mead, C.A. and Brandt, M.A. (1975) Time-Reversal Invariance, Representations for Scattering Wavefunctions, Symmetry of the Scattering Matrix, and Differential Cross-Sections, Adv. Chem. Phys. 33, 295–344.Google Scholar
  81. 81.
    Schatz, G.C. (1988) Quantum effects in gas phase bimolecular chemical reactions, Annu. Rev. Phys. Chem. 39, 317–340.CrossRefGoogle Scholar
  82. 82.
    Manolopoulos, D.E. and Clary, D.C. (1989) Quantum Calculations on Reactive Collisions, Annu. Rep. C. Roy. Soc. Chem. 86, 95–118.Google Scholar
  83. 83.
    Miller, W.H. (1990) Recent advances in quantum-mechanical reactive scatteringtheory, including comparison of state-to-state cross-sections for H/D + H2 → H2/HD + H reactions, Annu. Rev. Phys. Chem. 41, 245–281.Google Scholar
  84. 84.
    Bowman, J.M. (ed.) (1994) Advances in Molecular Vibrations and Collision Dynamics, Vols 2A and 2B, JAI, Greenwich.Google Scholar
  85. 85.
    Laganà, A., Pack, R.T. and Parker, G.A. (1988) Faraday Disc. Chem. Soc. 84, 409.Google Scholar
  86. 86.
    Honvault, P. and Launay, J.M. (2001) A quantum-mechanical study of the dynamics of the O(1D)+H2 → OH + H insertion reaction, J. Chem. Phys. 114, 1057–1059.CrossRefGoogle Scholar
  87. 87.
    Jaquet, R. (2001) Quantum reactive scattering: the time-independent approach, W. Jakubetz (ed.), Lecture Notes in Chemistry 77, Methods in Reaction Dynamics, Springer-Verlag, Berlin, pp. 17–126.Google Scholar
  88. 88.
    Mazur, J. and Rubin, R.J. (1959) J. Chem. Phys. 31, 1395.CrossRefGoogle Scholar
  89. 89.
    McCullough, E.A. and Wyatt, R.E. (1971) Dynamics of the collinear H + H2 reaction. I. Probability density and flux, J. Chem. Phys. 54, 3578–3591: ibid. (1971) Dynamics of the collinear H + H2 reaction. II. Energy Analysis, 54, 3592–3600.Google Scholar
  90. 90.
    Zuhrt, Ch., Kamal, T. and Zulicke, L. (1975) Quantum mechanical investigations of the collinear collisions F + H2 and F + D2 using the wavepacket approach, Chem. Phys. Lett. 36, 396–400.CrossRefGoogle Scholar
  91. 91.
    Kellerhals, E., Sathyamurthy, N. and Raff, L.M. (1976) Comparison of quantum mechanical and quasiclassical scattering as a function of surface topology J. Chem. Phys. 64, 818–825.CrossRefGoogle Scholar
  92. 92.
    Agrawal, P.M. and Raff, L.M. (1981) Calculation of reaction probabilities and rate coefficients for collinear three-body exchange reactions using time-dependent wave packet methods, J. Chem. Phys. 74, 5076–5081.Google Scholar
  93. 93.
    Leforestier, C. (1984) Competition between dissociation and exchange processes in a collinear A + BC Collision. 1. Exact Quantum Results, Chem. Phys. 87, 241–261.CrossRefGoogle Scholar
  94. 94.
    Zhang, Z.H. and Kouri. D.J. (1986) Wave-packet solution to the time-dependent arrangement-channel quantum-mechanics equations, Phys. Rev. A 34, 2687–2696.CrossRefGoogle Scholar
  95. 95.
    Mohan, V. and Sathyamurthy, N. (1987) Quantal wavepacket calculations of reactive scattering, J. Phys.Chem. 91, 213–258.Google Scholar
  96. 96.
    Neuhauser, D. and Baer, M. (1989) The application of wave-packets to reactive atom-diatom systems — a new approach, J. Chem. Phys. 91, 4651–4657.CrossRefGoogle Scholar
  97. 97.
    Neuhauser, D., Baer, M., Judson, R.S. and Kouri, D.J. (1990) A time-dependent wave packet approach to atom diatom reactive collision probabilities — theory and application to H + H2 (J=0) system, J. Chem. Phys. 93, 312–322.Google Scholar
  98. 98.
    Gray, S.K. and Balint-Kurti, G.G. (1998) Quantum dynamics with real wavepackets, including application to three-dimensional (J = 0) D + H2 → HD + H reactive scattering, J. Chem. Phys. 108, 950–962.CrossRefGoogle Scholar
  99. 99.
    Carroll, T.E. and Goldfield, E.M. (2001) Coriolis-coupled quantum dynamics for 0(1D)+H2 → OH + H, J. Phys. Chem. A 105, 2251–2256.CrossRefGoogle Scholar
  100. 100.
    Kingma, S.M., Somers, M.F., Pijper, E., Kroes, G.J., Olsen. R.A. and Baerends, E.J. (2003) Diffractive and reactive scattering of (v=0, j=0) HD from Pt(lll): Sixdimensional quantum dynamics compared with experiment, J. Chem. Phys. 118, 4190–4197.CrossRefGoogle Scholar
  101. 101.
    Althorpe, S.C. (2001) Quantum wavepacket method for state-to-state reactive cross sections, J. Chem. Phys. 114, 1601–1616.CrossRefGoogle Scholar
  102. 102.
    Goldfield, E.M. and Gray, S.K. (2002) A quantum dynamics study of H2+OH − ¿ H2O+H employing the Wu-Schatz-Lendvay-Fang-Harding potential function and a four-atom implementation of the real wave packet method, J. Chem. Phys. 117, 1604–1613.CrossRefGoogle Scholar
  103. 103.
    Gray, S.K. and Goldfield, E.M. (2001) Dispersion fitted finite difference method with applications to molecular quantum mechanics J. Chem. Phys. 115, 8331–8344.CrossRefGoogle Scholar
  104. 104.
    Zhang, J.Z.H. (1999) Theory and Application of Quantum Molecular Dynamics, World Scientific, Singapore.Google Scholar
  105. 105.
    Mohan, V. and Sathyamurthy, N. (1988) Quantal wavepacket calculations of reactive scattering, Computer Phys. Repts. 7, 213–258.Google Scholar
  106. 106.
    Balakrishnan, N., Kalyanaraman, C. and Sathyamurthy, N. (1997) Time-dependent quantum mechanical approach to reactive scattering and related processes Phys. Repts.-Review section of Physics Letters 280, 80–144.Google Scholar
  107. 107.
    Althorpe, S.C, Soldán, P. and Balint-Kurti, G.G. (eds.) (2001) Time-Dependent Quantum Dynamics, CCP6: Collaborative Computational Project on Heavy Particle Dynamics, Darcsbury Laboratory, Darcsbury.Google Scholar
  108. 108.
    Balint-Kurti, G.G., Gögtas, F., Mort, S.P., Offer, A.R., Laganà, A. and Garvasi, O. (1993) Comparison of Time-Dependent and Time-Independent Quantum Reactive Scattering — Li + HF → LiF + H Model Calculations, J. Chem. Phys. 99, 9567–9584.CrossRefGoogle Scholar
  109. 109.
    Hankel, M., Balint-Kurti, G.G., and Gray, S.K. (2000) Quantum mechanical calculation of product state distributions for the O(1D)+H2 → OH + H reaction on the ground electronic state surface, J. Chem. Phys. 113, 9658–9667.CrossRefGoogle Scholar
  110. 110.
    Hankel, M., Balint-Kurti, G.G. and Gray, S.K. (2001) Quantum mechanical calculation of reaction probabilities and branching ratios for the O(1D)+HD → OH(OD)+D(H) reaction on the X1A′ and I1 A″ adiabatic potential energy surfaces, J. Phys. Chem. 105, 2330–2339.Google Scholar
  111. 111.
    Hankel, M., Balint-Kurti, G.G. and Gray, S.K. (2003) Sine wavepackets: A new form of wavepacket for time-dependent quantum mechanical reactive scattering calculations Int. J. Quant. Chem. 92, 205–211.CrossRefGoogle Scholar
  112. 112.
    Gray, S.K., Goldfield, E.M., Schatz, G.C. and Balint-Kurti, G.G. (1999) Helicity decoupled quantum dynamics and capture model cross sections and rate constants for O(1D) + H2(r) → OH + H, Phys. Chem. Chem. Phys. 1, 1141–1148.CrossRefGoogle Scholar
  113. 113.
    Gray, S.K., Balint-Kurti, G.G., Schatz, G.C., Lin, J.J., Liu. X., Harich, S. and Yang, X. (2000) Probing the effect of the H2 rotational state inO(1D) +H2(r) → OH + H: Theoretical dynamics including nonadiabatic effects and a crossed molecular beam study, J. Chem. Phys. 113, 7330–7344.CrossRefGoogle Scholar
  114. 114.
    Meijer, A.J.H.M., Goldfield, E.M., Gray, S.K. and Balint-Kurti, G.G. (1998) Flux analysis for calculating reaction probabilities with real wavepackets, Chem. Phys. Lett. 293, 270–276.CrossRefGoogle Scholar
  115. 115.
    Miquel, I., Gonzalez, M., Sayos, R., Balint-Kurti, G.G., Gray, S.K. and Goldfield, E.M. (2003) Quantum reactive scattering calculations of cross sections and rate constants for the N(2D) +O2 → O(3P) + NO(X2II reaction, J. Chem. Phys. 118, 3111–3123.CrossRefGoogle Scholar
  116. 116.
    Pack, R.T. (1974) Space-fixed vs. body-fixed axes in atom-diatomic molecule scattering. Sudden approximations, J. Chem. Phys. 60, 633–639.CrossRefGoogle Scholar
  117. 117.
    McGuire, P. and Kouri, D.J. (1974) Quantum mechanical close coupling approach to molecular collisions. jz-conserving coupled states approximation, J. Chem. Phys. 60, 2488–2499.CrossRefGoogle Scholar
  118. 118.
    Bowman, J.M. (1991) Reduced dimensionality Theory of quantum reactive scattering, J. Phys. Chem. 95, 4960–4968.Google Scholar
  119. 119.
    Bittererova, M. and Bowman, J.M. (2000) A wave-packet calculation of the effect of reactant rotation and alignment on product branching in the O(1D) + HCl → CIO + H, OH + Cl reactions J. Chem. Phys. 113, 1–3; Bittererova, M., Bowman, J.M. and Peterson, K. (2000) Quantum scattering calculations of the O(D-1) plus HC1 reaction using a new ab initio potential and extensions of J-shifting, J. Chem. Phys. 113, 6186–6196.CrossRefGoogle Scholar
  120. 120.
    Miller, W.H. (1969) Coupled Equations and the Minimum Principle for Collisions of an Atom and a Diatomic Molecule, Including Rearrangements, J. Chem. Phys. 50, 407–418.Google Scholar
  121. 121.
    Althorpe, S.C. (2002) Time-dependent plane wave packet formulation of quantum scattering with application to H +D2 → HD + D, J. Chem. Phys. 117, 4623–4627.CrossRefGoogle Scholar
  122. 122.
    Althorpe, S.C., Fernandez-Alonso, F., Bean, B.D., Avers, J.D., Pomerantz, A.E., Zarc, R.N. and Wrcde, E. (2002) Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction, Nature 416, 67–70.CrossRefGoogle Scholar
  123. 123.
    Hankel, M. (2001) Time-Dependent Wavepacket Methods for the Calculation of Statc-to-Statc Molecular Reactive Cross Sections, Ph.D. thesis, University of Bristol, Bristol.Google Scholar
  124. 124.
    Messiah, A. (1962) Quantum Mechanics, Vol. II, North-Holland, Amsterdam.Google Scholar
  125. 126.
    Press, W.H., Flanncry, B.P., Tcukolsky, S.A. and Vcttcrling, W.T. (1987) Numerical Recipes, Cambridge University Press, Cambridge.Google Scholar
  126. 127.
    Monnerville, M., Halvick, P. and Rayez, J.C. (1992) Time-dependent calculation of the energy resolved state-to-state transition-probabilities for 3-atom exchange-reactions, Chem. Phys. 159, 227–234.CrossRefGoogle Scholar
  127. 128.
    Monnerville, M., Halvick, P. and Raycz, J.C. (1993) Collincar quantum wave-packet study of exothermic A + BC reactions involving an intermediate complex of linear geometry — application to the C + NO reaction, Chem. Soc Faraday Trans. 89, 1579–1585.CrossRefGoogle Scholar
  128. 129.
    Mott, N.F. and Massey, H.S.W. (1965) The Theory of Atomic Collisions, Oxford University Press, Oxford.Google Scholar
  129. 130.
    Leforestier, C. and Wyatt, R.E. (1983) Optical-potential for laser induced dissociation, J. Chem. Phys. 78, 2334–2344.CrossRefGoogle Scholar
  130. 131.
    Neuhauser, D. and Baer, M. (1989) The time-dependent Schrodinger-equation-application of absorbing boundary conditions, J. Chem. Phys. 90, 4351–4355.CrossRefGoogle Scholar
  131. 132.
    Neuhauser, D., Baer, M., Judson, R.S. and Kouri, D.J. (1991) The application of time-dependent wavepacket methods to reactive scattering, Cornp. Phys. Comrnun. 63, 460–481.Google Scholar
  132. 133.
    Child, M.S. (1991) Analysis of a complex absorbing barrier, Molec. Phys. 72, 89–93.Google Scholar
  133. 134.
    Seideman, T. and Miller, W.H. (1992) Calculation of the Cumulative Reaction Probability via a Discrete Variable Representation with Absorbing Boundary-Conditions. J. Chem. Phys. 96, 4412–4422.CrossRefGoogle Scholar
  134. 135.
    Vibók, Á. and Balint-Kurti, G.G. (1992) Reflection and Transmission of Waves by a Complex Potential A Semiclassical Jeffreys-Wcntzel-Kramers-Brillouin (JWKB) Treatment, J. Chem. Phys. 96, 7615–7620.Google Scholar
  135. 136.
    Vibók, Á. and Balint-Kurti, G.G. (1992) Parameterization of Complex Absorbing Potentials for use in Time Dependent Quantum Dynamics, J. Phys. Chem. 96, 8712–8719.Google Scholar
  136. 137.
    Balint-Kurti, G.G. and Vibók. Á. (1993) Complex Absorbing Potentials in Time Dependent Quantum Dynamics, in C. Cerjan (ed.), Numerical Grid Methods and their Application to Schrdinger’s Equation, NATO ASI series, Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, 412 195–205.Google Scholar
  137. 138.
    Mahapatra, S. and Sathyamurthy, N. (1993) Negative imaginary potentials in time-dependent quantum molecular scattering, Chem. Soc Faraday Trans. 93, 773–779.Google Scholar
  138. 139.
    Macias, D., Brouard, S. and Muga, J.G. (1994) Optimization of absorbing potentials, Chem. Phys. Lett. 228, 672–677.Google Scholar
  139. 140.
    Brouard, S., Macias, D. and Muga, J.G. (1994) Perfect absorbers for stationary and wavepacket scattering, J. Phys. A 27, L439–L445.CrossRefGoogle Scholar
  140. 141.
    Riss, U.V. and Meyer, H.-D. (1996) Investigation on the reflection and transmission properties of complex absorbing potentials, J. Chem. Phys. 105, 1409–1419.CrossRefGoogle Scholar
  141. 142.
    Riss, U.V. and Meyer, H.-D. (1998) The transformative complex absorbing potential method: a bridge between complex absorbing potentials and smooth exterior scaling, J. Phys. B 31, 2279–2304.CrossRefGoogle Scholar
  142. 143.
    Manolopoulos, D.E. (2002) Derivation and reflection properties of a transmission-free absorbing potential, J. Chem. Phys. 117, 9552–9559.CrossRefGoogle Scholar
  143. 144.
    Gray, S.K. and Verosky, J.M. (1994) Classical Hamiltonian structures in wave-packet dynamics, J. Chem. Phys. 100, 5011–5022.CrossRefGoogle Scholar
  144. 145.
    Gray, S.K. and Manolopoulos, D.E. (1996) Symplcctic integrators tailored to the time-dependent Schrodinger equation, J. Chem. Phys. 104 7099–7112.CrossRefGoogle Scholar
  145. 146.
    Arfken, G.B. and Weber, H.J. (1970) Mathematical Methods for Physicists, Academic Press, San Diego.Google Scholar
  146. 147.
    Huang, Y., Kouri, D.J. and Hoffman, D.K. (1994) General, energy-separable Faber polynomial representation of operator-functions — theory and application in quantum scattering, J. Chem. Phys. 101, 10493–10506.Google Scholar
  147. 148.
    Huang, Y., Iyengar, S.S., Kouri, D.J. and Hoffman, D.K. (1996) Further analysis of solutions to the time-independent wave packet equations of quantum dynamics. 2. Scattering as a continuous function of energy using finite, discrete approximate Hamiltonians, J. Chem. Phys. 105, 927–939.Google Scholar
  148. 149.
    Mandelshtam, V.A. and Taylor, H.S. (1995) Spectral projection approach to the quantum scattering calculations, J. Chem. Phys. 102, 7390–7399.Google Scholar
  149. 150.
    Mandelshtam, V.A. and Taylor, H.S. (1995) A simple recursion polynomial expansion of the Green’s-function with absorbing boundary conditions — application to the reactive scattering, J. Chem. Phys. 103, 2903–2907.Google Scholar
  150. 151.
    Kroes, G.-J. and Neuhauser, D. (1996) Performance of a time-independent scattering wave packet technique using real operators and wave functions, J. Chem. Phys. 105, 8690–8698.Google Scholar
  151. 152.
    Kroes, G.-J., Baerends, E.J. and Mowrey, R.C. (1997) Six-Dimensional Quantum Dynamics of Dissociative Chemisorption of (v = 0, j = 0) H2 on Cu(100), Phys. Rev. Lett. 78, 3583–3586.CrossRefGoogle Scholar
  152. 153.
    Kroes, G.-J., Wall, M.R., Peng, J.W. and Neuhauser, D. (1997) Avoiding long propagation times in wave packet calculations on scattering with resonances: A new algorithm involving filter diagonalization, J. Chem. Phys. 106, 1800–1807.CrossRefGoogle Scholar
  153. 154.
    Kroes, G.-J., van Hemert, M.C., Billing, G.D. and Neuhauser, D. (1997) Photodis-sociation of CH2(1 3B1) through the coupled 2 A″ and 3 A″ states: Quantitative branching ratios for the production of CH+H and C+H2. Chem. Phys. Lett. 271, 311–319.CrossRefGoogle Scholar
  154. 155.
    Chen, R. and Guo, H. (1996) Evolution of quantum system in order domain of Chebyshev operator. J. Chem. Phys. 105, 3569–3578.Google Scholar
  155. 156.
    Chen, R. and Guo, H. (1996) Extraction of resonances via wave packet propagation in Chebyshev order domain: collinear H + H2 scattering, Chem. Phys. Lett. 261, 605–611.CrossRefGoogle Scholar
  156. 157.
    Guo, H. (1998) A time-independent theory of photodissociation based on polynomial propagation, J. Chem. Phys. 108, 2466–2472.Google Scholar
  157. 158.
    Guo, H. and Seideman, T. (1999) Quantum mechanical study of photodissociation of oriented CINO(1S), Phys. Chem. Chem. Phys. 1, 1265–1272.Google Scholar
  158. 159.
    Xie, D., Guo, H., Amatatsu, Y. and Kosloff, R. (2000) Three-dimensional photodissociation dynamics of rotational state selected methyl iodide. J. Phys. Chem. 104, 1009–1019.Google Scholar
  159. 160.
    Guo, H. (1998) An efficient method to calculate resonance Raman amplitudes via polynomial propagation, Chem. Phys. Lett. 289, 396–402.CrossRefGoogle Scholar
  160. 161.
    Sayós, R. and González, M., TRIQCT (unpublished program).Google Scholar
  161. 162.
    Lee, S.-H. and Liu, K. (1999) Effect of reagent rotation in O(1D) + H2(v = 0,j): A sensitive probe of the accuracy of the ab initio excited surfaces? J. Chem. Phys. 111, 4351–4352.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Gabriel G. Balint-Kurti
    • 1
  • Alex Brown
    • 2
  1. 1.School of ChemistryThe University of BristolBristolUK
  2. 2.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations