Advertisement

Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics

  • Guillaume Charpiat
  • Olivier Faugeras
  • Renaud Keriven
  • Pierre Maurel
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter proposes a framework for dealing with two problems related to the analysis of shapes: the definition of the relevant set of shapes and that of defining a metric on it. Following a recent research monograph by Delfour and Zolésio [8], we consider the characteristic functions of the subsets of ℝ2 and their distance functions. The L 2 norm of the difference of characteristic functions and the L∞ and the W 1,2 norms of the difference of distance functions define interesting topologies, in particular that induced by the well-known Hausdorff distance. Because of practical considerations arising from the fact that we deal with image shapes defined on finite grids of pixels, we restrict our attention to subsets of ℝ2 of positive reach in the sense of Federer [12], with smooth boundaries of bounded curvature. For this particular set of shapes we show that the three previous topologies are equivalent. The next problem we consider is that of warping a shape onto another by infinitesimal gradient descent, minimizing the corresponding distance. Because the distance function involves an inf, it is not differentiable with respect to the shape. We propose a family of smooth approximations of the distance function which are continuous with respect to the Hausdorff topology, and hence with respect to the other two topologies. We compute the corresponding Gâteaux derivatives. They define deformation flows that can be used to warp a shape onto another by solving an initial value problem. We show several examples of this warping and prove properties of our approximations that relate to the existence of local minima. We then use this tool to produce computational de.nitions of the empirical mean and covariance of a set of shape examples. They yield an analog of the notion of principal modes of variation. We illustrate them on a variety of examples.

Key words

Shape metrics characteristic functions distance functions deformation flows lower semi continuous envelope shape warping empirical mean shape empirical covariance operator principal modes of variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bookstein FL (1986) Size and shape spaces for landmark data in two dimensions. Statistical Science 1:181–242.zbMATHCrossRefGoogle Scholar
  2. 2.
    Carne TK (1990) The geometry of shape spaces. Proc. London Math. Soc. 3(61):407–432.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Charpiat G, Faugeras O, Keriven R (2004) Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics.Google Scholar
  4. 4.
    Choquet G (1969) Cours d’Analyse, volume II. Masson, Paris.zbMATHGoogle Scholar
  5. 5.
    Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape models — their training and application. Computer Vision and Image Understanding 61(1):38–59.CrossRefGoogle Scholar
  6. 6.
    Delfour MC, Zolésio J-P (July 1994) Shape analysis via oriented distance func-tions. Journal of Functional Analysis 123(1):129–201.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Delfour MC, Zolésio J-P (1998) Shape analysis via distance functions: local theory. In: Boundaries, interfaces and transitions, volume 13 of CRM Proc. Lecture Notes, pages 91–123. AMS, Providence, RI.Google Scholar
  8. 8.
    Delfour MC, Zolésio J-P (2001) Shapes and geometries. Advances in Design and Control. SIAM, Philadelphia.Google Scholar
  9. 9.
    Dryden IL, Mardia KV (1998) Statistical Shape Analysis. John Wiley & Sons, New York.zbMATHGoogle Scholar
  10. 10.
    Dupuis P, Grenander U, Miller M (1998) Variational problems on flows of dif-feomorphisms for image matching. Quarterly of Applied Math. 56:587–600.zbMATHMathSciNetGoogle Scholar
  11. 11.
    Evans LC (1998) Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. Proceedings of the American Mathematical Society.Google Scholar
  12. 12.
    Federer H (1951) Hausdorff measure and Lebesgue area. Proc. Nat. Acad. Sci. USA 37:90–94.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fréchet M(1944) L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application à la moyenne d’un élément aléatoire de nature quel-conque. Revue Scientifique, pages 483–512 (82ème année).Google Scholar
  14. 14.
    Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré X(IV):215–310.Google Scholar
  15. 15.
    Fréchet M(1961) Les courbes aléatoires. Bull. Inst. Internat. Statist. 38:499–504.Google Scholar
  16. 16.
    Grenander U (1993) General Pattern Theory. Oxford University Press, London.Google Scholar
  17. 17.
    Grenander U, Chow Y, Keenan D (1990) HANDS: A Pattern Theoretic Study of Biological Shapes. Springer-Verlag, Berlin and New York.zbMATHGoogle Scholar
  18. 18.
    Grenander U, Miller M (1998) Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics 56(4):617–694.zbMATHMathSciNetGoogle Scholar
  19. 19.
    Harding EG, Kendall DG, editors (1973) Foundation of a theory of random sets, Stochastic Geometry, pages 322–376. John Wiley & Sons, New York.Google Scholar
  20. 20.
    Karcher H (1977) Riemannian centre of mass and mollifier smoothing. Comm. Pure Appl. Math 30:509–541.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kendall DG (1984) Shape manifolds, procrustean metrics and complex projec-tive spaces. Bulletin of London Mathematical Society 16:81–121.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kendall DG (1989) A survey of the statistical theory of shape. Statistical Science 4(2):87–120.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kendall W (1990) Probability, convexity, and harmonic maps with small image i: uniqueness and fine existence. Proc. London Math. Soc. 61(2):371–406.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Klassen E, Srivastava A, Mio W, Joshi SH (2004) Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3):372–383.CrossRefGoogle Scholar
  25. 25.
    Leventon M, Grimson E, Faugeras O (June 2000) Statistical shape influence in geodesic active contours. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pages 316–323, Hilton Head Island, South Carolina. IEEE Computer Society.Google Scholar
  26. 26.
    Leventon M (2000) Anatomical shape models for medical image analysis. PhD thesis, MIT, Cambridge, MA.Google Scholar
  27. 27.
    Matheron G (1975) Random Sets and Integral Geometry. John Wiley & Sons, New York.zbMATHGoogle Scholar
  28. 28.
    Miller M, Younes L (2001) Group actions, homeomorphisms, and matching: a general framework. International Journal of Computer Vision 41(1/2):61–84.zbMATHCrossRefGoogle Scholar
  29. 29.
    Osher S, Paragios N, editors (2003) Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag, Berlin and New York.Google Scholar
  30. 30.
    Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12–49.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Pennec X (December 1996) L’Incertitude dans les problèmes de reconnaissance et de recalage — applications en imagerie médicale et biologie moléculaire. PhD thesis, Ecole Polytechnique, Palaiseau (France).Google Scholar
  32. 32.
    Rudin W (1966) Real and Complex Analysis. McGraw-Hill, New York.zbMATHGoogle Scholar
  33. 33.
    Serra J (1982) Image Analysis and Mathematical Morphology. Academic Press, London.zbMATHGoogle Scholar
  34. 34.
    Sethian JA (1999) Level set methods and fast marching methods: evolving in-terfaces in computational geometry, fluid mechanics, computer vision, and ma-terials sciences. Cambridge Monograph on Applied and Computational Mathe-matics. Cambridge University Press, London.Google Scholar
  35. 35.
    Small CG (1996) The Statistical Theory of Shapes. Springer-Verlag, Berlin and New York.Google Scholar
  36. 36.
    Soatto S, Yezzi AJ (May 2002) DEFORMOTION, deforming motion, shape average and the joint registration and segmentation of images. In: Heyden A, Sparr G, Nielsen M, Johansen P, editors, Proceedings of the 7th European Con-ference on Computer Vision, pages 32–47, Copenhagen, Denmark. Springer-Verlag, Berlin and New York.Google Scholar
  37. 37.
    Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J. Computational Physics 114:146–159.zbMATHCrossRefGoogle Scholar
  38. 38.
    Toga A, Thompson P (2001) The role of image registration in brain mapping. Image and Vision Computing 19(1–2):3–24.CrossRefGoogle Scholar
  39. 39.
    Toga A, editor (1998) Brain Warping. Academic Press, London.Google Scholar
  40. 40.
    Trouvé A (1998) Diffeomorphisms groups and pattern matching in image analy-sis. International Journal of Computer Vision 28(3):213–221.CrossRefGoogle Scholar
  41. 41.
    Trouvé A, Younes L (June 2000) Diffeomorphic matching problems in one di-mension: designing and minimizing matching functionals. In: Proceedings of the 6th European Conference on Computer Vision, pages 573–587, Dublin, Ireland.Google Scholar
  42. 42.
    Trouvé A, Younes L (February 2000) Mise en correspondance par difféomorphismes en une dimension: définition et maximisation de fonction-nelles. In: 12ème Congrès RFIA’00, Paris.Google Scholar
  43. 43.
    Younes L (1998) Computable elastic distances between shapes. SIAM Journal of Applied Mathematics 58(2):565–586.zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Younes L (1999) Optimal matching between shapes via elastic deformations. Image and Vision Computing 17(5/6):381–389.CrossRefGoogle Scholar
  45. 45.
    Younes L (2003) Invariance, déformations et reconnaissance de formes. Mathématiques et Applications. Springer-Verlag, Berlin and New York.Google Scholar

Copyright information

© Birkhäuser Boston 2006

Authors and Affiliations

  • Guillaume Charpiat
    • 1
  • Olivier Faugeras
    • 2
  • Renaud Keriven
    • 3
  • Pierre Maurel
    • 1
  1. 1.Odyssée LaboratoryENSParisFrance
  2. 2.Odyssée LaboratoryINRIA Sophia AntipolisSophia-Antipolis CedexFrance
  3. 3.Odyssée LaboratoryENPCMarne la ValléeFrance

Personalised recommendations