Advertisement

A Semi-quantum Version of the Game of Life

  • Adrian P. Flitney
  • Derek Abbott
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 7)

Abstract

A version of John Conway’s game of Life is presented where the normal binary values of the cells are replaced by oscillators which can represent a superposition of states. The original game of Life is reproduced in the classical limit, but in general additional properties not seen in the original game are present that display some of the effects of a quantum mechanical Life. In particular, interference effects are seen.

Key words

Cellular automata quantum games quantum cellular automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Benjamin S. C. and Hayden P. M., Comment on “A quantum approach to static games of complete information,” Phys. Rev. Lett. 87, 069801 (2001).CrossRefGoogle Scholar
  2. [2]
    Benjamin S. C. and Hayden P. M., Comment on “Quantum games and quantum strategies,” Phys. Rev. A 64, 030301(R) (2001).Google Scholar
  3. [3]
    Berlekamp E. R., Conway J. H. and Guy R. K., Winning Ways for your Mathematical Plays, Vol. 2 (Academic Press, London, 1982).zbMATHGoogle Scholar
  4. [4]
    Du J., Xu X., Li H., Zhou X. and Han R., Entanglement playing a dominating role in quantum games, Phys. Lett. A 289, 9 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Dürr C. and Santha M., A decision procedure for well-formed unitary linear quantum cellular automata, SIAM J. Comp. 31, 1076 (2001).CrossRefGoogle Scholar
  6. [6]
    Eisert J., Wilkens M. and Lewenstein M., Quantum games and quantum strategies, Phys. Rev. Lett. 83, 3077 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Eisert J. and Wilkens M., Quantum games, J. Mod. Opt. 47, 2543 (2000).zbMATHMathSciNetGoogle Scholar
  8. [8]
    Fitzpatrick M., Smith K., Belousek D. W., Delgado A., Roos K. R. and Kenny J. P., The quantum cellular automata as a Markov process, Chaos Soliton Fract. 10, 1375 (1999).zbMATHCrossRefGoogle Scholar
  9. [9]
    Flitney A. P. and Abbott D., Quantum version of the Monty Hall problem, Phys. Rev. A 65, 062318 (2002).CrossRefGoogle Scholar
  10. [10]
    Gardiner M., Mathematical games: The fantastic combinations of John Conway’s new solitaire game ‘Life,’ Sci. Am. 223, Oct. 120 (1970).CrossRefGoogle Scholar
  11. [11]
    Gardiner M., Mathematical games: On cellular automata, self-reproduction, the Garden of Eden and the game of ‘Life,’ Sci. Am. 224 Feb. 116 (1971).Google Scholar
  12. [12]
    Gardner M., Wheels, Life and Other Mathematical Amusements (W.H. Freeman, New York, 1983).zbMATHGoogle Scholar
  13. [13]
    Grossing G. and Zeilinger A., Structures in quantum cellular automata, Physica B 151, 366 (1988).CrossRefMathSciNetGoogle Scholar
  14. [14]
    ’t Hooft G., Isler K. and Kalitzin S., Quantum field theoretic behavior of a deterministic cellular automata, Nucl. Phys. B 386, 495 (1992).Google Scholar
  15. [15]
    Wu Hua and Sprung D. W. L., Three-dimensional simulation of quantum cellular automata and the zero-dimensional approximation, J. Appl. Phys. 84, 4000 (1998).CrossRefGoogle Scholar
  16. [16]
    Iqbal A. and Toor A. H., Evolutionary stable strategies in quantum games, Phys. Lett. A 280, 249 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Iqbal A. and Toor A. H., Quantum mechanics gives stability to Nash equilibrium, Phys. Rev. A 65, 022036 (2002).MathSciNetGoogle Scholar
  18. [18]
    Johnson N. F., Playing a quantum game with a corrupted source, Phys. Rev. A 63 020302(R) (2001).Google Scholar
  19. [19]
    Marinatto L. and Weber T., A quantum approach to static games of complete information, Phys. Lett. A 272, 291 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Meyer D. A., Quantum strategies, Phys. Rev. Lett. 82, 1052 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Meyer D. A., From quantum cellular automata to quantum lattice gases, J. Stat. Phys. 85, 551 (1996).zbMATHCrossRefGoogle Scholar
  22. [22]
    von Neumann J., The Theory of Self-Replicating Automata (Univ. of Illinois Press, Urbana, IL, 1966).Google Scholar
  23. [23]
    Pati A. K. and Braunstein S. L., Quantum mechanical universal constructor, preprint xxx.lanl.gov/quant-ph/0303124.Google Scholar
  24. [24]
    Wolfram S., A New Kind of Science (Wolfram Media Inc., Champaign, IL, USA, 2002).zbMATHGoogle Scholar
  25. [25]
    Wolfram S., Mathematica: A System for Doing Mathematics by Computer (Addison-Wesley, Redwood City, California, 1988, 2000).zbMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 2005

Authors and Affiliations

  • Adrian P. Flitney
    • 1
  • Derek Abbott
    • 1
  1. 1.Centre for Biomedical Engineering (CBME), Department of Electrical and Electronic EngineeringThe University of AdelaideAustralia

Personalised recommendations