Lie Theory pp 135-175

Part of the Progress in Mathematics book series (PM, volume 230)

The Plancherel Formula on Reductive Symmetric Spaces from the Point of View of the Schwartz Space

  • Patrick Delorme

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ank01]
    K. Ankabout, Relations d’orthogonalité de Schur généralisées pour les espaces symétriques réductifs, J. Funct. Anal. 185 (2001), 63–110.CrossRefMATHMathSciNetGoogle Scholar
  2. [Art91]
    J. Arthur, A local trace formula, Inst. Hautes Études Sci. Publ. Math. 73 (1991), 5–96.MATHMathSciNetGoogle Scholar
  3. [Ban87a]
    E. P. van den Ban, Asymptotic behaviour of matrix coefficients related to reductive symmetric spaces, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 3, 225–249.MATHMathSciNetGoogle Scholar
  4. [Ban87b]
    E. P. van den Ban, Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula, Ark. Mat. 25 (1987), no. 2, 175–187.MATHMathSciNetGoogle Scholar
  5. [Ban88]
    E. P. van den Ban, The principal series for a reductive symmetric space. I. H-fixed distribution vectors, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 359–412.MATHGoogle Scholar
  6. [Ban92]
    E. P. van den Ban, The principal series for a reductive symmetric space. II. Eisenstein integrals, J. Funct. Anal. 109 (1992), no. 2, 331–441.MATHMathSciNetGoogle Scholar
  7. [Ban00]
    E. P. van den Ban, The Plancherel theorem for a reductive symmetric space, Lecture at the European Summer School in Group Theory, Odense, 2000.Google Scholar
  8. [BCD96]
    E. P. van den Ban, J. Carmona, and P. Delorme, Paquets d’ondes dans l’espace de Schwartz d’un espace symétrique réductif, J. Funct. Anal. 139 (1996), no. 1, 225–243.MathSciNetGoogle Scholar
  9. [BS87]
    E. P. van den Ban and H. Schlichtkrull, Asymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math. 380 (1987), 108–165.MathSciNetGoogle Scholar
  10. [BS97a]
    E. P. van den Ban and H. Schlichtkrull, Fourier transform on a semisimple symmetric space, Invent. Math. 130 (1997), no. 3, 517–574.MathSciNetGoogle Scholar
  11. [BS97b]
    E. P. van den Ban and H. Schlichtkrull, The most continuous part of the Plancherel decomposition for a reductive symmetric space, Ann. of Math. (2) 145 (1997), no. 2, 267–364.MATHMathSciNetGoogle Scholar
  12. [BS00a]
    E. P. van den Ban and H. Schlichtkrull, A residue calculus for root systems, Compositio Math. 123 (2000), no. 1, 27–72.MathSciNetGoogle Scholar
  13. [BS00b]
    E. P. van den Ban and H. Schlichtkrull, Analytic families of eigenfunctions on a reductive symmetric space, preprint, 2000.Google Scholar
  14. [BS01]
    E. P. van den Ban and H. Schlichtkrull, Harmonic analysis on reductive symmetric spaces, European Congress of Mathematics, Barcelona, 2000, Vol. 1, 565–582, Birkhauser Verlag, Basel, 2001.Google Scholar
  15. [Ber57]
    M. Berger, Les espaces symétriques noncompacts, Ann. Sci. École Norm. Sup. (3) 74 (1957), 85–177.Google Scholar
  16. [Ber88]
    J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys. 5 (1988), no. 4, 663–710 (1989).CrossRefMATHMathSciNetGoogle Scholar
  17. [BW80]
    A. Borel and N. R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton University Press, Princeton, N.J., 1980.Google Scholar
  18. [BD92]
    J.-L. Brylinski and P. Delorme, Vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’Eisenstein, Invent. Math. 109 (1992), no. 3, 619–664.MathSciNetGoogle Scholar
  19. [Car]
    J. Carmona, Plongements de séries discrètes pour un espace symétrique réductif, J. Funct. Anal. 182 (2001), 16–50.CrossRefMATHMathSciNetGoogle Scholar
  20. [Car97]
    J. Carmona, Terme constant des fonctions tempérées sur un espace symétrique réductif, J. Reine Angew. Math. 491 (1997), 17–63.MATHMathSciNetGoogle Scholar
  21. [CD94]
    J. Carmona and P. Delorme, Base méromorphe de vecteurs distributions Hinvariants pour les séries principales généralisées d’espaces symétriques réductifs: équation fonctionnelle, J. Funct. Anal. 122 (1994), no. 1, 152–221.CrossRefMathSciNetGoogle Scholar
  22. [CD98]
    J. Carmona and P. Delorme, Transformation de Fourier sur l’espace de Schwartz d’un espace symétrique réductif, Invent. Math. 134 (1998), no. 1, 59–99.CrossRefMathSciNetGoogle Scholar
  23. [CM82]
    W. Casselman and D. Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), no. 4, 869–930.CrossRefMathSciNetGoogle Scholar
  24. [Del87]
    P. Delorme, Injection de modules sphériques pour les espaces symétriques réductifs dans certaines représentations induites, with an appendix by E. P. van den Ban, Noncommutative harmonic analysis and Lie groups (Marseille-Luminy, 1985), Springer, Berlin, 1987, Erratum in the Appendix of [Del96], pp. 108–143.Google Scholar
  25. [Del96]
    P. Delorme, Intégrales d’Eisenstein pour les espaces symétriques réductifs: tempérance, majorations. Petite matrice B, J. Funct. Anal. 136 (1996), no. 2, 422–509.CrossRefMATHMathSciNetGoogle Scholar
  26. [Del97a]
    P. Delorme, Inversion des intégrales orbitales sur certains espaces symétriques réductifs (d’après A. Bouaziz et P. Harinck), Astérisque (1997), no. 241, Exp. No. 810, 4, 157–177, Séminaire Bourbaki, Vol. 1995/96.Google Scholar
  27. [Del97b]
    P. Delorme, Troncature pour les espaces symétriques réductifs, Acta Math. 179 (1997), no. 1, 41–77.MATHMathSciNetGoogle Scholar
  28. [Del98]
    P. Delorme, Formule de Plancherel pour les espaces symétriques réductifs, Ann. of Math. (2) 147 (1998), no. 2, 417–452.MATHMathSciNetGoogle Scholar
  29. [Del99]
    P. Delorme, Espace de Schwartz pour la transformation de Fourier hyperg éométrique, Appendice de M. Tinfou, J. Funct. Anal. 168 (1999), 239–312.CrossRefMATHMathSciNetGoogle Scholar
  30. [Del02]
    P. Delorme, Harmonic analysis on real reductive symmetric spaces, Proceedings of the International Congress of Mathematicians, Beijing, 2002, vol. 2, 545–554, Higher Education Press, Beijing, 2002.Google Scholar
  31. [Dix81]
    J. Dixmier, von Neumann algebras, North-Holland Publishing Co., Amsterdam, 1981. With a preface by E. C. Lance. Translated from the second French edition by F. Jellett.Google Scholar
  32. [FJ80]
    M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. (2) 111 (1980), no. 2, 253–311.MATHMathSciNetGoogle Scholar
  33. [GV88]
    R. Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Springer-Verlag, Berlin, 1988.Google Scholar
  34. [H98]
    P. Harinck, Fontions orbitales sur GC/GR. Formule d’inversion des intégrales orbitales et formule de Plancherel, J. Funct. Anal. 153 (1998), 52–17.MATHMathSciNetGoogle Scholar
  35. [HC75]
    Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Funct. Anal. 19 (1975), 104–204.MathSciNetGoogle Scholar
  36. [HC76a]
    Harish-Chandra, Harmonic analysis on real reductive groups. II. Wave packets in the Schwartz space, Invent. Math. 36 (1976), 1–55.CrossRefMathSciNetGoogle Scholar
  37. [HC76b]
    Harish-Chandra, Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math. (2) 104 (1976), no. 1, 117–201.MathSciNetGoogle Scholar
  38. [He]
    S. Helgason, Groups and geometric analysis, Academic Press, 1984.Google Scholar
  39. [.K.K.M.+.7.8.]
    M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Ōshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), no. 1, 1–39.MathSciNetGoogle Scholar
  40. [Kna86]
    A. W. Knapp, Representation theory of semisimple groups, An overview based on examples, Princeton University Press, Princeton, NJ, 1986.Google Scholar
  41. [Kos75]
    B. Kostant, On the tensor product of a finite and an infinite dimensional representation, J. Funct. Anal. 20 (1975), no. 4, 257–285.CrossRefMATHMathSciNetGoogle Scholar
  42. [KS80]
    A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups. II, Invent. Math. 60 (1980), no. 1, 9–84.CrossRefMathSciNetGoogle Scholar
  43. [KZ82]
    A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. (2) 116 (1982), no. 2, 389–455.MathSciNetGoogle Scholar
  44. [Mat79]
    T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), no. 2, 331–357.MATHMathSciNetGoogle Scholar
  45. [Mat82]
    T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J. 12 (1982), no. 2, 307–320.MATHMathSciNetGoogle Scholar
  46. [Mat88]
    T. Matsuki, A description of discrete series for semisimple symmetric spaces. II, in Representations of Lie groups, Kyoto, Hiroshima, 1986, Academic Press, Boston, MA, 1988, pp. 531–540.Google Scholar
  47. [Óla87]
    G. Ólafsson, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math. 90 (1987), no. 3, 605–629.MATHMathSciNetGoogle Scholar
  48. [Ōsh81]
    T. Ōshima, Fourier analysis on semisimple symmetric spaces, in Noncommutative harmonic analysis and Lie groups (Marseille-Luminy, 1980) (Berlin), vol. 880, Springer, 1981, pp. 357–369.Google Scholar
  49. [Ōsh88]
    T. Ōshima, Asymptotic behavior of spherical functions on semisimple symmetric spaces, in Representations of Lie groups, Kyoto, Hiroshima, 1986, Academic Press, Boston, MA, 1988, pp. 561–601.Google Scholar
  50. [ŌM84]
    T. Ōshima and T. Matsuki, A description of discrete series for semisimple symmetric spaces, in Group representations and systems of differential equations (Tokyo, 1982), North-Holland, Amsterdam, 1984, pp. 331–390.Google Scholar
  51. [ŌS80]
    T. Ōshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57 (1980), no. 1, 1–81.MathSciNetGoogle Scholar
  52. [ŌS84]
    T. Ōshima and J. Sekiguchi, The restricted root system of a semisimple symmetric pair, in Group representations and systems of differential equations (Tokyo, 1982), North-Holland, Amsterdam, 1984, pp. 433–497.Google Scholar
  53. [Ōsh84]
    T. Ōshima, Boundary value problems for systems of linear partial differential equations with regular singularities, in Group representations and systems of differential equations (Tokyo, 1982), North-Holland, Amsterdam, 1984, pp. 391–432.Google Scholar
  54. [Ros78]
    W. Rossmann, The structure of semisimple symmetric spaces, in Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977), Queen’s Univ., Kingston, Ont., 1978, pp. 513–520. Queen’s Papers in Pure Appl. Math., No. 48.Google Scholar
  55. [Sch83]
    H. Schlichtkrull, The Langlands parameters of Flensted-Jensen’s discrete series for semisimple symmetric spaces, J. Funct. Anal. 50 (1983), no. 2, 133–150.CrossRefMATHMathSciNetGoogle Scholar
  56. [Sch01]
    H. Schlichtkrull, The Paley-Wiener theorem for a reductive symmetric space, Lecture at the European Summer School in Group Theory, Luminy, 2001.Google Scholar
  57. [Sou]
    S. Souaifi, Fonctions K-finies et D(G/H)-finies sur un espace symétrique réductif réel, to appear in J. Funct. Anal.Google Scholar
  58. [Vog88]
    D. A. Vogan, Irreducibility of discrete series representations for semisimple symmetric spaces, in Representations of Lie groups, Kyoto, Hiroshima, 1986, Academic Press, Boston, MA, 1988, pp. 191–221.Google Scholar
  59. [VW90]
    D. A. Vogan and N. R. Wallach, Intertwining operators for real reductive groups, Adv. Math. 82 (1990), no. 2, 203–243.MathSciNetGoogle Scholar
  60. [Wal83]
    N. R. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, Lie group representations, I (College Park, Md., 1982/1983), Springer, Berlin, 1983, pp. 287–369.Google Scholar
  61. [Wal88]
    N. R. Wallach, Real reductive groups. I, Academic Press Inc., Boston, MA, 1988.Google Scholar
  62. [Wal92]
    N. R. Wallach, Real reductive groups. II, Academic Press Inc., Boston, MA, 1992.Google Scholar
  63. [War72]
    G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 188.Google Scholar

Copyright information

© Birkhäuser Boston 2005

Authors and Affiliations

  • Patrick Delorme
    • 1
  1. 1.CNRS-UPR 9016Institut de Mathématiques de LuminyMarseille Cedex 9France

Personalised recommendations