Voltage-Gated Ion Channels

  • Francisco Bezanilla


The bit of information in nerves is the action potential, a fast electrical transient in the transmembrane voltage that propagates along the nerve fiber. In the resting state, the membrane potential of the nerve fiber is about ¡ 60 mV (negative inside with respect to the extracellular solution). When the action potential is initiated, the membrane potential becomes less negative and even reverses sign (overshoot) within a millisecond and then goes back to the resting value in about 2 ms, frequently after becoming even more negative than the resting potential. In a landmark series of papers, Hodgkin and Huxley studied the ionic events underlying the action potential and were able to describe the conductances and currents quantitatively with their classical equations (Hodgkin and Huxley, 1952). The generation of the rising phase of the action potential was explained by a conductance to NaC ions that increases as the membrane potential is made more positive. This is because, as the driving force for the permeating ions (NaC) was in the inward direction, more NaC ions come into the nerve and make the membrane more positive initiating a positive feedback that depolarizes the membrane even more. This positive feedback gets interrupted by the delayed opening of another voltage-dependent conductance that is K-selective. The driving force for KC ions is in the opposite direction of NaC ions, thus KC outward flow repolarizes the membrane to its initial value. The identification and characterization of the voltage-dependent NaC and KC conductances was one of the major contributions of Hodgkin and Huxley. In their final paper of the series, they even proposed that the conductance was the result of increased permeability in discrete areas under the control of charges or dipoles that respond to the membrane electric field. This was an insightful prediction of ion channels and gating currents.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggarwal, S.K., and R. MacKinnon. 1996. Contribution of the S4 segment to gating charge in the Shaker KC channel. Neuron 16:1169–1177.Google Scholar
  2. Agnew, W.S., S.R. Levinson, J.S. Brabson, and M.A. Raftery. 1978. Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc. Natl. Acad. Sci. USA 75:2602–2610.ADSGoogle Scholar
  3. Ahern, C.A., and R. Horn. 2004a. Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol. 123:205–216.Google Scholar
  4. Ahern, C.A., and R. Horn. 2004b. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 27(6):303–307.Google Scholar
  5. Ahern, C.A., and R. Horn. 2005. Focused electric field across the voltage sensor of potassium channels. Neuron 48:25–29.Google Scholar
  6. Almers, W. 1978. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82:96–190.Google Scholar
  7. Armstrong, C.M., and F. Bezanilla. 1973. Currents related to movement of the gating particles of the sodium channels. Nature 242:459–461.ADSGoogle Scholar
  8. Armstrong, C.M., and F. Bezanilla. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70:567–590.Google Scholar
  9. Asamoah, O.K, B. Chanda, and F. Bezanilla. 2004. A spectroscopic survey of gating induced environmental changes in the Shaker potassium channel. Biophys. J. 86:432a.Google Scholar
  10. Asamoah, O.K., J.P. Wuskell, L.M. Loew, and F. Bezanilla. 2003. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37:85–97.Google Scholar
  11. Baker, O.S., H.P. Larsson, L.M. Mannuzzu, and E.Y. Isacoff. 1998. Three transmembrane conformation and sequence-dependent displacement of the S4 domain in Shaker KC channel gating. Neuron 20:1283–1294.Google Scholar
  12. Bezanilla, F. 2000. The voltage sensor in voltage-dependent channels. Phys. Rev. 80:555–592.Google Scholar
  13. Bezanilla, F. 2002. Perspective: Voltage sensor movements. J. Gen. Physiol. 120:465–473.Google Scholar
  14. Bezanilla, F., and E. Perozo. 2003. The voltage sensor and the gate in ion channels. In: Advances in Protein Chemistry, Vol. 63. D. Rees, editor. Elsevier Science, New York.Google Scholar
  15. Bezanilla, F., E. Perozo, and E. Stefani. 1994. Gating of Shaker KC channels. II. The components of gating currents and a model of channel activation. Biophys. J. 66:1011–1021.Google Scholar
  16. Blaustein, R.O., P.A. Cole, C. Williams, and C. Miller. 2000. Tethered blockers as molecular ‘tape measures’ for a voltage-gated KC channel. Nat. Struct. Biol. 7:309–311.Google Scholar
  17. Blunck R., and F. Bezanilla. 2002. Fluorescence recordings of a low number of voltage gated KC channels. Biophys. J. 82:267a.Google Scholar
  18. Blunck R., J. Cordero, L. Cuello, E. Perozo, and F. Bezanilla. 2006. Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction (submitted).Google Scholar
  19. Blunck, R., D.M. Starace, A.M. Correa, and F. Bezanilla. 2004. Detecting rearrangements of Shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells. Biophys. J. 86:3966–3980.Google Scholar
  20. Blunck, R., J.L. Vazquez-Ibar, Y.S. Liu, E. Perozo, and F. Bezanilla. 2003. Fluorescence measurements of KcsA channels in artificial bilayers. Biophys. J. 84(2, Pt 2):124a–125a.Google Scholar
  21. Borisenko, V., T. Lougheed, J. Hesse, E. Fureder-Kitzmuller, N. Fertig, J.C. Behrends, G.A. Woolley, G.J. Schutz. 2003. Simultaneous optical and electrical recording of single gramicidin channels. Biophys. J. 84(1):612–622.ADSGoogle Scholar
  22. Cantor, C.R., and P.R. Schimmel. 1980. Biophysical Chemistry. Part II. Techniques for the Study of Biological Structure and Function. W.H. Freeman and Co., New York.Google Scholar
  23. Caterall, W.A. 1986. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55:953–985.Google Scholar
  24. Cha, A., and F. Bezanilla. 1997. Characterizing voltage-dependent conformational changes in the Shaker KC channel with fluorescence. Neuron 19:1127–1140.Google Scholar
  25. Cha, A., and F. Bezanilla. 1998. Structural implications of fluorescence quenching in the Shaker KC channel. J. Gen. Physiol. 112:391–408.Google Scholar
  26. Cha, A., P.C. Ruben, A.L. George, E. Fujimoto, and F. Bezanilla. 1999a. Voltage sensors in domains III and IV, but not I and II, are immobilized by NaC channel fast inactivation. Neuron 22: 73–87.Google Scholar
  27. Cha, A., G. Snyder, P.R. Selvin, and F. Bezanilla. 1999b. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402:809–813.ADSGoogle Scholar
  28. Chanda, B., O.K. Asamoah, and F. Bezanilla. 2004. Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J. Gen. Physiol. 123:217–230.Google Scholar
  29. Chanda, B., O.K. Asamoah, R. Blunck, B. Roux, and F. Bezanilla. 2005. Gating charge displacement in voltage-gated channels involves limited transmembrane movement. Nature 436:852–856.ADSGoogle Scholar
  30. Chanda, B., and F. Bezanilla. 2002. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120:629–645.Google Scholar
  31. Chapman, M.L., and A.M.J. VanDongen. 2005. K channel subconductance levels result from heteromeric pore conformations. J. Gen. Physiol. 126:87–103.Google Scholar
  32. Cohen, B.E., M. Grabe, and L.Y. Jan. 2003. Answers and questions from KvAP structure. Neuron,39:395–400.Google Scholar
  33. Conti, F., and W. Stuhmer. 1989. Quantal charge redistribution accompanying the structural transitions of sodium channels. Eur. Biophys. J. 17:53–59.Google Scholar
  34. Cordero-Marales, J.F., L.G. Cuello, Y. Zhao, V. Jogini, D.M. Cortes, B. Roux, and E. Perozo. 2006. Molecular determinants of gating at the potassium-channel selectivity filter. Nature Struct. Mol. Biol. 13:311–318.Google Scholar
  35. Cuello, L.G., M. Cortes, and E. Perozo. 2004. Molecular architecture of the KvAP voltage dependent KC channel in a lipid bilayer. Science 306:491–495.ADSGoogle Scholar
  36. Durell, S.R., and H.R. Guy. 1992. Atomic scale structure and functional models of voltage-gated potassium channels. Biophys. J. 62:238–250.ADSGoogle Scholar
  37. Durell, S.R., I.H. Shrivastava, and H.R. Guy. 2004. Models of the structure and voltage-gating mechanism of the Shaker KC channel. Biophys. J. 87:2116–2130.ADSGoogle Scholar
  38. Fernandez, J.M., F. Bezanilla, and R.E. Taylor. 1982. Effect of chloroform on the movement of charges within the nerve membrane. Nature 297:150–152.ADSGoogle Scholar
  39. Freites, J.A., D.J. Tobias, G. von Heijne, and S.H. White. 2005. Interface connections of a transmembrane voltage sensor. PNAS 102:15059–15064.ADSGoogle Scholar
  40. Gandhi, C.S., and E.Y. Isacoff. 2002. Molecular models of voltage sensing. J. Gen. Physiol. 120:455–463.Google Scholar
  41. Glauner, K.S., L.M. Mannuzzu, C.S. Gandhi, and E.Y. Isacoff. 1999. Spectroscopic mapping of voltage sensor movements in the Shaker potassium channel. Nature 402:813–817.ADSGoogle Scholar
  42. Gonzalez, C., F.J. Morera, E. Rosenmann, and R. Latorre. 2005. S3b amino acid residues do not shuttle across the bilayer in voltage-gated Shaker KC channels. Proc. Natl. Acad. Sci. 102:5020–5025.ADSGoogle Scholar
  43. Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2001. Periodic perturbations in Shaker KC channel gating kinetics by deletions in the S3-S4 linker. Proc. Natl. Acad. Sci. 98:9617–9623.ADSGoogle Scholar
  44. Hamill, O.P., A. Marty, E. Neher, B. Sackmann, and F.J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.Google Scholar
  45. Hirschberg, B., A. Rovner, M. Lieberman, and J. Patlak. 1996. Transfer of twelve charges is needed to open skeletal muscle NaC channels. J. Gen. Physiol. 106:1053–1068.Google Scholar
  46. Hodgkin, A.L., and A.F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.Google Scholar
  47. Horn, R., S. Ding, and H.J. Gruber. 2000. Immobilizing the moving parts of voltage-gated ion channels. J. Gen. Physiol. 116:461–476.Google Scholar
  48. Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. Allosteric voltage gating of potassium channels I:mSlo ionic currents in absence of Ca2C. J.Gen.Physiol. 114:277–304.Google Scholar
  49. Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538.ADSGoogle Scholar
  50. Islas, L.D., and F.J. Sigworth. 2001. Electrostatics and the gating pore of Shaker potassium channels. J. Gen. Physiol. 117:69–89.Google Scholar
  51. Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002a. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.ADSGoogle Scholar
  52. Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002b. The open pore conformation of potassium channels. Nature 417:523–526.ADSGoogle Scholar
  53. Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003a. X-ray structure of a voltage-dependent K(C) channel. Nature 423:33–41.ADSGoogle Scholar
  54. Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. 2003b. The principle of gating charge movement in a voltage-dependent KC channel. Nature 423:42–48.ADSGoogle Scholar
  55. Jiang, Q.-X., D.-N. Wang, and R. MacKinnon. 2004. Electron microscopic analysis of KvAP voltage dependent KC channel in an open conformation. Nature 430:806–810.ADSGoogle Scholar
  56. Keynes, R.D., and E. Rojas. 1974. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J. Physiol (Lond.) 239:393–434.Google Scholar
  57. Kuzmenkin, A., F. Bezanilla, and A.M. Correa. 2004. Gating of the bacterial sodium channel NaChBac: Voltage dependent charge movement and gating currents. J. Gen. Physiol. 124:349–356.Google Scholar
  58. Laine, M., M.C. Lin, J.P. Bannister, W.R. Silverman, A.F. Mock, B. Roux, and D.M. Papazian. 2003. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39:467–481.Google Scholar
  59. Larsson, H.P., O.S. Baker, D.S. Dhillon, and E.Y. Isacoff. 1996. Transmembrane movement of the Shaker KC channel S4. Neuron 16:387–397.Google Scholar
  60. Lee, H.C., J.M. Wang, and K.J. Swartz. 2003. Interaction between extracellular Hanatoxin and the resting conformation of the voltage sensor paddle in KV channels. Neuron 40(3):527–536.Google Scholar
  61. Li-Smerin, Y., D.H. Hackos, and K.J. Swartz. 2000. Alpha-helical structural elements within the voltage-sensing region domains of a KC channel. J. Gen. Physiol. 115:33–50.Google Scholar
  62. Long, S.B., E.B. Campbell, and R. MacKinnon. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family KC channel. Science 309:897–903.ADSGoogle Scholar
  63. Long, S.B., E.B. Campbell, and R. MacKinnon. 2005b. Structural basis of electromechanical coupling. Science 309:903–908.ADSGoogle Scholar
  64. Loots, E., and E.Y. Isacoff. 1998. Protein rearrangements underlying slow inactivation of the Shaker KC channel. J. Gen. Physiol. 112:377–389.Google Scholar
  65. Mannuzzu, L.M., and E.Y. Isacoff. 2000. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J. Gen. Physiol. 115:257–268.Google Scholar
  66. Mannuzzu, L.M., M.M. Moronne, and E.Y. Isacoff. 1996. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216.ADSGoogle Scholar
  67. Monks, S.A., D.J. Needleman, and C. Miller. 1999. Helical structure and packing orientation of the S2 segment in the Shaker KC channel. J. Gen. Physiol. 113:415–423.Google Scholar
  68. Noceti, F., P. Baldelli, X. Wei, N. Qin, L. Toro, L. Birnbaumer, and E. Stefani. 1996. Effective gating charges per channel in voltage-dependent KC and Ca2C channel. J. Gen. Physiol. 108:143–155.Google Scholar
  69. Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ikeda, H. Takahashi, H. Nakayama, Y. Kanaoka, and N. Minamino. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127.ADSGoogle Scholar
  70. Papazian, D.M., X.M. Shao, S.-A. Seoh, A.F. Mock, Y. Huang, and D.H.Weinstock. 1995. Electrostatic interactions of S4 voltage sensor in Shaker KC channel. Neuron 14:1293–1301.Google Scholar
  71. Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature 221:844–846.ADSGoogle Scholar
  72. Perozo, E., M. Cortes, and L.G. Cuello. 1999. Structural rearrangements underlying KC -channel activation gating. Science 285:73–78.Google Scholar
  73. Perozo, E., R. MacKinnon, F. Bezanilla, and E. Stefani. 1993. Gating currents from a non-conducting mutant reveal open-closed conformations in Shaker KC channels. Neuron 11:353–358.Google Scholar
  74. Phillips, L.R., M. Milescu, Y. Li-Smerin, J.A. Midell, J.I. Kim, and K.J. Swartz. 2005. Voltage sensor activation with a tarantula toxin as cargo. Nature 436:857–860.ADSGoogle Scholar
  75. Posson, D.J., P. Ge, C. Miller, F. Bezanilla, and P.R. Selvin. 2005. Small vertical movement of a KC channel voltage sensor measured with luminescence energy transfer. Nature 436:848–851.ADSGoogle Scholar
  76. Richardson, J., P. Ge, P.R. Selvin, F. Bezanilla, and D.M. Papazian. 2006. Orientation of the voltage sensor relative to the pore differs in prokaryotic and eukaryotic voltage-dependent potassium channels [abstract]. Biophys. J. Google Scholar
  77. Richardson, J., D.M. Starace, F. Bezanilla, and A.M. Correa. 2005. Scanning NaCh-Bac topology using LRET [abstract]. Biophys. J. Roux, B. 1997. Influence of the membrane potential on the free energy of an intrinsic protein. Biophys. J. 73:2980–2989.Google Scholar
  78. Ruta, V., J. Chen, and R. MacKinnon. 2005. Calibrated measurement of gatingcharge arginine displacement in the KvAP voltage-dependent KC channel. Cell 123:463–475.Google Scholar
  79. Santacruz-Toloza, L., Y. Huang, S.A. John, and D.M. Papazian. 1994. Glycosylation of Shaker potassium channel protein in insect cell culture and in Xenopus oocytes. Biochemistry 33:5607–5613.Google Scholar
  80. Schoppa, N.E., K. McCormack, M.A. Tanouye, and F.J. Sigworth. 1992. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255:1712–1715.ADSGoogle Scholar
  81. Schoppa, N.E., and F.J. Sigworth. 1998. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channel. J. Gen. Physiol. 111:313–342.Google Scholar
  82. Selvin, P.R. 2002. Principles and biophysical applications of luminescent lanthanide probes. Annu. Rev. Biophys. Biomol. Struct. 31:275–302.Google Scholar
  83. Seoh, S.-A., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996.Voltage-sensing residues in the S2 and S4 segments of the Shaker KC channel. Neuron 16:1159–1167.Google Scholar
  84. Sigg, D., and F. Bezanilla. 1997. Total charge movement per channel: The relation between gating displacement and the voltage sensitivity of activation. J. Gen. Physiol. 109:27–39.Google Scholar
  85. Sigg, D., F. Bezanilla, and E. Stefani. 2003. Fast gating in the Shaker KC channel and the energy landscape of activation. PNAS 100:7611–7615.ADSGoogle Scholar
  86. Sigg, D., H. Qian, and F. Bezanilla. 1999. Kramers’ diffusion theory applied to gating kinetics of voltage dependent channels. Biophys. J. 76:782–803.Google Scholar
  87. Sigg, D., E. Stefani, and F. Bezanilla. 1994. Gating current noise produced by elementary transition in Shaker potassium channels. Science 264:578–582.ADSGoogle Scholar
  88. Sonnleitner, A., L.M. Mannuzzu, S. Terakawa, and E.Y. Isacoff. 2002. Structural rearrangements in single ion channels detected optically in living cells. Proc. Natl. Acad. Sci. USA 99(20):12759–12764.ADSGoogle Scholar
  89. Starace, D.M., and F. Bezanilla. 2001. Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker KC channel. J. Gen. Physiol. 117:469–490.Google Scholar
  90. Starace, D.M., and F. Bezanilla. 2004. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–552.ADSGoogle Scholar
  91. Starace, D.M., P.R. Selvin, and F. Bezanilla. 2002. Resonance energy transfer measurements on transmembrane motion of Shaker KC channel voltage sensing region. Biophys. J. 82:174a.Google Scholar
  92. Starace, D.M., E. Stefani, and F. Bezanilla. 1997.Voltage-dependent proton transport by the voltage sensor of the Shaker KC channel. Neuron 19:1319–1327.Google Scholar
  93. Swartz, K.J. 2004. Towards a structural view of gating in potassium channels. Nat. Rev. Neurosci. 5:905–916.MathSciNetGoogle Scholar
  94. Tempel, T.M., D.M. Papazian, T.L. Schwarz, Y.N. Jan, and L.Y. Jan. 1987. Sequence of a probable potassium channel component encoded at Shaker locus in Drosophila. Science 237:770–775.ADSGoogle Scholar
  95. Tiwari-Woodruff, S.K., C.T. Schulteis, A.F. Mock, and D.M. Papazian. 1997. Electrostatic interactions between transmembrane segments mediate folding of Shaker KC channel subunits. Biophys. J. 72:1489–1500.Google Scholar
  96. Tombola, F., M.M. Pathak, and E.Y. Isacoff. 2005. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron45:379–388.Google Scholar
  97. Treptow, W., B. Maigret, C. Chipot, and M. Tarek. 2004. Coupled motions between the pore and voltage-sensor domains: A model for Shaker B, a voltage-gated potassium channel. Biophys. J. 87:2365–2379.ADSGoogle Scholar
  98. Vandenberg, C.A., and F. Bezanilla. 1991. A sodium channel model of gating based on single channel, macroscopic ionic and gating currents in the squid giant axon. Biophys. J. 60:1511–1533.Google Scholar
  99. Webster, S.M., D. Del Camino, J.P. Dekker, and G. Yellen. 2004. Intracellular gate opening in Shaker KC channels defined by high-affinity metal bridges. Nature428:864–868.ADSGoogle Scholar
  100. Yang, N., A.L. George, and R. Horn. 1996. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16:113–122.Google Scholar
  101. Yang, N., and R. Horn. 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–218.Google Scholar
  102. Yellen, G. 1998. The moving parts of voltage-gated ion channels. Quart. Rev. Biophys. 31:239–295.Google Scholar
  103. Yusaf, S.P., D. Wray, and A. Sivaprasadarao. 1996. Measurement of the movement of the S4 segment during activation of a voltage-gated potassium channel. Pflugers Arc. Eur. J. Physiol. 433:91–97.Google Scholar
  104. Zagotta, W.N., T. Hoshi, J. Dittman, and R. Aldrich. 1994. Shaker potassium channel gating III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103:321–362.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Francisco Bezanilla
    • 1
  1. 1.Institute for Molecular Pediatric ScienceUniversity of ChicagoChicago

Personalised recommendations