Metabolomics: Enabling Systems-Level Phenotyping in Rice Functional Genomics

  • Lee Tarpley
  • Ute Roessner


Independent Component Analysis Metabolic Network Independent Component Analysis Metabolomic Analysis Metabolomic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arita M (2004) Computational resources for metabolomics. Brief Funct Genomics Proteomics 3:84–93CrossRefGoogle Scholar
  2. Arlt K, Brandt S, Kehr J (2001) Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J Chromatogr A 926:319–325PubMedCrossRefGoogle Scholar
  3. Cavalieri D, De Filippo C (2005) Bioinformatic methods for integrating whole-genome expression results into cellular networks. Drug Discov Today 10:727–734PubMedCrossRefGoogle Scholar
  4. Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625PubMedCrossRefGoogle Scholar
  5. Frenzel T, Miller A, Engel K-H (2002) Metabolite profiling - a fractionation method for analysis of major and minor compounds in rice grains. Cereal Chem 79:215–221Google Scholar
  6. Fukusaki E, Kobayashi A (2005) Plant metabolomics: potential for practical operation. J Biosci Bioeng 100:347–354PubMedCrossRefGoogle Scholar
  7. Hyvärinen A (1999) Survey on Independent Component Analysis. Neural Comput Surv 2:94–128Google Scholar
  8. Jenkins H, Johnson H, Kular B, Wang T, Hardy N (2005) Toward supportive data collection tools for plant metabolomics. Plant Physiol 138:67–77PubMedCrossRefGoogle Scholar
  9. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedCrossRefGoogle Scholar
  10. Liang Y, Kelemen A (2006) Associating phenotypes with molecular events: recent statistical advances and challenges underpinning microarray experiments. Funct Integr Genomics 6:1–13PubMedCrossRefGoogle Scholar
  11. Lüdemann A, Weicht D, Selbig J, Kopka J (2004) PaVESy: pathway visualization and editing system. Bioinformatics 20:2841–2844PubMedCrossRefGoogle Scholar
  12. Morino K, Matsuda F, Miyazawa H, Sukegawa A, Miyagawa H, Wakasa K (2005) Metabolic profiling of tryptophan-overproducing rice calli that express a feedback-insensitive $α $ subunit of anthranilate synthase. Plant Cell Physiol 46:514–521PubMedCrossRefGoogle Scholar
  13. Nikiforova VJ, Daub CO, Hesse H, Willmitzer L, Hoefgen R (2005) Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. J Exp Bot 56:1887–1895PubMedCrossRefGoogle Scholar
  14. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50PubMedCrossRefGoogle Scholar
  15. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29PubMedCrossRefGoogle Scholar
  16. Roessner-Tunali U, Lui J, Leisse A, Balbo I, Perez-Melis A, Willmitzer L, Fernie AR (2004) Flux analysis of organic and amino acid metabolism in potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes. Plant J 39:668–679PubMedCrossRefGoogle Scholar
  17. Sato S, Soga T, Nishioka T, Tomita M (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40:151–163PubMedCrossRefGoogle Scholar
  18. Schad M, Mungur R, Fiehn O, Kehr J (2005) Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods 1:2PubMedCrossRefGoogle Scholar
  19. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454PubMedCrossRefGoogle Scholar
  20. Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem 278:29442–29453PubMedCrossRefGoogle Scholar
  21. Smilde AK, Jansen JJ, Hoefsloot HCJ, Lamers R-JAN, van der Greef J, Timmerman ME (2005) ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21:3043–3048PubMedCrossRefGoogle Scholar
  22. Steuer R, Kurths J, Fiehn O, Weckwerth W (2003) Observing and interpreting correlations in metabolomic networks. Bioinformatics 19:1019–1026PubMedCrossRefGoogle Scholar
  23. Stitt M, Fernie AR (2003) From measurements of metabolites to metabolomics: an ‘on the fly’ perspective illustrated by recent studies of carbon-nitrogen interactions. Curr Opin Biotechnol 14:136–144PubMedCrossRefGoogle Scholar
  24. Takahashi H, Hotta Y, Hayashi M, Kawai-Yamada M, Komatsu S, Uchimiya H (2005) High throughput metabolome and proteome analysis of transgenic rice plants (Oryza sativa L.). Plant Biotechnol 22:47–60Google Scholar
  25. Tarpley L, Duran AL, Kebrom TH, Sumner LW (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5:8PubMedCrossRefGoogle Scholar
  26. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar
  27. Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235PubMedCrossRefGoogle Scholar
  28. Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993PubMedCrossRefGoogle Scholar
  29. van der Greef J, Smilde AK (2005) Symbiosis of chemometrics and metabolomics: past, present, and future. J Chemometr 19:376–386CrossRefGoogle Scholar
  30. Weckwerth W, Morgenthal K (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10:1551–1558PubMedCrossRefGoogle Scholar
  31. Wurtele ES, Li J, Diao L, Zhang H, Foster CM, Fatland B, Dickerson J, Brown A, Cox Z, Cook D, Lee E-K, Hofmann H (2003) MetNet: software to build and model the biogenetic lattice of Arabidopsis. Comp Funct Genomics 4:239–245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lee Tarpley
    • 1
  • Ute Roessner
    • 2
  1. 1.Texas A&M Agricultural Research and Extension CenterBeaumontUSA
  2. 2.Australian Centre for Plant Functional Genomics, School of BotanyUniversity of MelbourneVictoriaAustralia

Personalised recommendations