Activation Tagging Systems in Rice

  • Alexander A.T. Johnson
  • Su-May Yu
  • Mark Tester

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedCrossRefGoogle Scholar
  2. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960PubMedCrossRefGoogle Scholar
  3. Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE:YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509PubMedCrossRefGoogle Scholar
  4. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394PubMedCrossRefGoogle Scholar
  5. Bougourd S, Marrison J, Haseloff J (2000) An aniline blue staining procedure for confocal microscopy and 3D imaging of normal and perturbed cellular phenotypes in mature Arabidopsis embryos. Plant J 24:543–550PubMedCrossRefGoogle Scholar
  6. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  7. Brandt SP (2005) Microgenomics: gene expression analysis at the tissue-specific and single-cell levels. J Exp Bot 56:495–505PubMedCrossRefGoogle Scholar
  8. Cotsaftis O, Guiderdoni E (2005) Enhancing gene targeting efficiency in higher plants: rice is on the move. Transgen Res 14:1–14CrossRefGoogle Scholar
  9. Dong Y, von Arnim AG (2003) Novel plant activation-tagging vectors designed to minimize 35S enhancer-mediated gene silencing. Plant Mol Biol Rep 21: 349–358Google Scholar
  10. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15PubMedCrossRefGoogle Scholar
  11. Finkel E (1999) Australian center develops tools for developing world. Science 5433:1481–1483CrossRefGoogle Scholar
  12. Fridborg I, Kuusk S, Moritz T, Sundberg E (1999) The Arabidopsis dwarf mutant shiexhibits reduced gibberellin responses conferred by over-expression of a new putative zinc finger protein. Plant Cell 11:1019–1031PubMedCrossRefGoogle Scholar
  13. Gallois JL, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380PubMedCrossRefGoogle Scholar
  14. Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16:669–680PubMedGoogle Scholar
  15. Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151PubMedCrossRefGoogle Scholar
  16. Hirochika H, Guiderdoni E, An G, Hsing Y, Eun MY, Han C, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334PubMedCrossRefGoogle Scholar
  17. Hsing Y-I, Chern C-G, Fan M-J, Lu P-C, Chen K-T, Lo S-F, Ho S-L, Lee K-W, Wang Y-C, Sun P-K, Ko R, Huang W-L, Chen J-L, Chung C-I, Lin Y-C, Hour A-L, Wang Y-W, Chang Y-C, Tsai M-W, Lin Y-S, Chen Y-C, Chen S, Yen H-M, Li C-P, Wey C-K, Tseng C-S, Lai M-H, Chen L-J, Yu S-M (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol, doi (10.1007/s 11103-006-9093) 63:351–364CrossRefGoogle Scholar
  18. Huang S, Cerny RE, Bhat DS, Brown SM (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol 125: 573–584CrossRefGoogle Scholar
  19. Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, Tsuhara Y, Iizumi H, Goto Y, Matsui M (2003) Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J 36:421–429PubMedCrossRefGoogle Scholar
  20. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  21. Ito T, Meyerowitz EM (2000) Over-expression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12:1541–1550PubMedCrossRefGoogle Scholar
  22. Ito Y, Eiguchi M, Kurata N (2004) Establishment of an enhancer trap system with Ds and GUS for functional genomics in rice. Mol Genet Genom 271:639–650Google Scholar
  23. Jeon J, Sichul L, Ki-Hong J, Jun S, Jeong D, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han M, Sung R, Choi H, Yu J, Choi J, Cho S, Cha S, Kim S, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570PubMedCrossRefGoogle Scholar
  24. Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644PubMedCrossRefGoogle Scholar
  25. Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132PubMedCrossRefGoogle Scholar
  26. Johnson AAT, Hibberd JM, Gay C, Essah PA, Haseloff J, Tester M, Guiderdoni E (2005) Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J 41:779–789PubMedCrossRefGoogle Scholar
  27. Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985PubMedCrossRefGoogle Scholar
  28. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965PubMedCrossRefGoogle Scholar
  29. Kerk NM, Ceserani T, Tausta SL, Sussex IM, Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132:27–35PubMedCrossRefGoogle Scholar
  30. Kiegle E, Moore C, Haseloff J, Tester M, Knight M (2000) Cell-type specific calcium responses to drought, NaCl, and cold in Arabidopsis root: a role for endodermis and pericycle in stress signal transduction. Plant J 23:267–278PubMedCrossRefGoogle Scholar
  31. Lee H, Suh S, Park E, Cho E, Ahn JH, Kim S, Lee JS, Kwon, YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis.Genes Dev 14:2366–2376PubMedCrossRefGoogle Scholar
  32. Li J, Lease KA, Tax FE, Walker JC (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:5916–5921PubMedCrossRefGoogle Scholar
  33. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222PubMedCrossRefGoogle Scholar
  34. Liang D, Wu C, Li C, Xu C, Zhang J, Kilian A, Li X, Zhang Q, Xiong L (2006) Establishment of a patterned GAL4/VP16 transactivation system for discovering gene function in rice. Plant J 46:1059–1072PubMedCrossRefGoogle Scholar
  35. Marsch-Martinez N, Greco R, Arkel VG, Herrera-Estrella L, Pereira A (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556PubMedCrossRefGoogle Scholar
  36. Masaki T, Tsukagoshi H, Mitsui N, Nishii T, Hattori T, Morikami A, Nakamura K (2005) Activation tagging of a gene for a protein with novel class of CCT-domain activates expression of a subset of sugar-inducible genes in Arabidopsis thaliana. Plant J 43:142–152PubMedCrossRefGoogle Scholar
  37. Matsuhara S, Jingu F, Takahashi T, Komeda Y (2000) Heat shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J 22:79–86PubMedCrossRefGoogle Scholar
  38. Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913PubMedCrossRefGoogle Scholar
  39. Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683PubMedCrossRefGoogle Scholar
  40. Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596PubMedCrossRefGoogle Scholar
  41. Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925PubMedCrossRefGoogle Scholar
  42. Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323PubMedCrossRefGoogle Scholar
  43. Odell JT, Nagy F, Chua N (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812PubMedCrossRefGoogle Scholar
  44. Peng H, Huang H, Yang Y, Zhai Y, Wu J, Huang D, Lu T (2005) Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Plant Sci 168:1571–1579CrossRefGoogle Scholar
  45. Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14:367–379PubMedCrossRefGoogle Scholar
  46. Rørth P (1996) A modular misexpression screen in Drosophiladetecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93:12418–12422PubMedCrossRefGoogle Scholar
  47. Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358PubMedCrossRefGoogle Scholar
  48. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotylmutation of Arabidopsisdisrupts circadian rhythms and the photoperiodic control of flowering. Cell 93: 1219–1229CrossRefGoogle Scholar
  49. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133PubMedCrossRefGoogle Scholar
  50. Sun J, Niu QW, Tarkowski P, Zheng B, Tarkowska D, Sandberg G, Chua NH, Zuo J (2003) The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol 131:167–176PubMedCrossRefGoogle Scholar
  51. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotech 20:1030–1034CrossRefGoogle Scholar
  52. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527PubMedCrossRefGoogle Scholar
  53. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  54. Toba G, Ohsako T, Miyata N, Ohtsuka T, Seong KH, Aigaki T (1999) The gene search system: a method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics 151:725–737PubMedGoogle Scholar
  55. van der Graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127:4971–4980PubMedGoogle Scholar
  56. van der Graaff E, Hooykaas PJ, Keller B (2002) Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J 32:819–830PubMedCrossRefGoogle Scholar
  57. Walden, R, Fritze K, Hayashi H, Miklashevichs E, Harling H, Schell J (1994) Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol Biol 26:1521–1528PubMedCrossRefGoogle Scholar
  58. Weigel D, Ahn JH, Blázquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation Tagging in Arabidopsis. Plant Physiol 122:1003–1013PubMedCrossRefGoogle Scholar
  59. Wilson K, Long D, Swinburne J, Coupland G (1996) A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8:659–671PubMedCrossRefGoogle Scholar
  60. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou DX, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418–427PubMedCrossRefGoogle Scholar
  61. Yang Y, Peng H, Huang H, Wu J, Jia S, Huang D, Lu T (2004) Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci 167:281–288CrossRefGoogle Scholar
  62. Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S (2006) RMD: a rice mutant database for functional analysis of the rice genome. Nucl Acids Res 34:745–748CrossRefGoogle Scholar
  63. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309PubMedCrossRefGoogle Scholar
  64. Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexander A.T. Johnson
    • 1
  • Su-May Yu
    • 2
  • Mark Tester
    • 1
  1. 1.Australian Centre for Plant Functional GenomicsGlen OsmondAustralia
  2. 2.Institute of Molecular BiologyAcademia SinicaTaipeiRepublic of China

Personalised recommendations