Advertisement

High-Temperature Superconductors: A Review of YBa2Cu3O6+x and (Bi,Pb)2Sr2Ca2Cu3O10

  • H.C. Freyhardt
  • E.E. Hellstrom
Part of the International Cryogenics Monograph Series book series (ICMS)

Abstract

Since high-temperature superconductors were discovered in 1986, there have been extensive research efforts to understand the nature of superconductivity in these materials and to fashion them into forms that can be used in practical applications. This chapter reviews basic aspects of superconductivity in the families of copper-oxide-based high-temperature superconductors. It discusses methods used to fabricate YBa2Cu3O6+x and ReBa2Cu3O6+x (Re = rare earth) into bulk monoliths and reviews the ongoing studies and development work to make them into coated conductors. It examines the oxide-powder-in-tube method to fabricate Agsheathed (Bi,Pb)2Sr2Ca2Cy3u3O10 wire and current applications where these wires are used.

Keywords

Precursor Powder Oxide Interface Coated Conductor YBCO Layer YBCO Coat Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Onnes, H.K., Akad. van Wetenschappen (Amsterdam), 14, 113, 818, 1911; “The Superconductivity of Mercury.” Comm. Phys. Lab. Univ. Leiden, Nos. 122 and 124, 1911.Google Scholar
  2. 2.
    Little, W.A., Phys. Rev. 134, A1416, 1964.ADSCrossRefGoogle Scholar
  3. 3.
    Jerome, D., Mazaud, A., Ribault M., and Bechgaard, K., J. Phys. (Paris), 41, L95, 1980.Google Scholar
  4. 4.
    Johnston, D.C., J. Low Temp. Phys., 25, 145, 1976.CrossRefADSGoogle Scholar
  5. 5.
    Sleight, A.W., Gillson, J.L., and Bierstedt, P.E., Solid State Commun., 17, 27, 1975.CrossRefADSGoogle Scholar
  6. 6.
    Bednorz, J.G., and Müller, K.A., Z. Phys. B, 64, 189, 1986.CrossRefADSGoogle Scholar
  7. 7.
    Bednorz, J.G., Takashige, M., and Müller, K.A., Europhysics Lett., 3, 379, 1987.ADSCrossRefGoogle Scholar
  8. 8.
    Wu, M.K., Asburn, R., Tong, J., Hor, P.H., Meng, L., Huang, J., Wang, Y.Q., and Chu, C.W., Phys. Rev. Lett., 58, 908, 1987.ADSCrossRefGoogle Scholar
  9. 9.
    Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys., 27, L209, 1988.ADSCrossRefGoogle Scholar
  10. 10.
    Sheng, Z.Z., and Hermann, A.M., Nature, 332, 138, 1988.ADSCrossRefGoogle Scholar
  11. 11.
    Putilin, S.N., Antipov, E.V., Chmaissem, O., and Marezio, M., Nature, 362, 226, 1993.ADSCrossRefGoogle Scholar
  12. 12.
    Schilling, A., Cantoni, M., Guo, J.D., and Ott, H.R., Nature, 363, 56, 1993.ADSCrossRefGoogle Scholar
  13. 13.
    Gao, L., Xue, Y.Y., Chen, F., Xiong, Q., Meng, R.L., Ramirez, D., and Chu, C.W., Phys. Rev. B, 50, 4260, 1994.ADSCrossRefGoogle Scholar
  14. 14.
    Akimitsu, J., first report on January 10, 2001, at a symposium on “Transition Metal Oxides” in Sendai, Japan. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature, 410, 63, 2002.Google Scholar
  15. 15.
    Bardeen, J., Cooper, L.N., and Schrieffer, J.R., Phys. Rev., 108, 1175, 1957.zbMATHADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature, 336, 660, 1988.ADSCrossRefGoogle Scholar
  17. 17.
    Bordet, P., Chaillout, C., Chenavas, J., Hodeau, J.L., Marezio, M., Karpinski, J., and Kaldis, E., Nature, 334, 596, 1988.ADSCrossRefGoogle Scholar
  18. 18.
    Mikheenko, P.N., Uprety, K.K., and Dou, S.X., “BSCCO”, Handbook of Superconducting Materials, Cardwell, D.A., and Ginsley, D.S., eds., IoP, Bristol 2003, p. 947.Google Scholar
  19. 19.
    Bellingeri, E., and Flükiger, R., “TlSCCO”, Handbook of Superconducting Materials, Cardwell, D.A., and Ginsley, D.S., eds., IoP, Bristol 2003, p. 993.Google Scholar
  20. 20.
    Schwartz, J., and Sastry, P.V.P.S.S., “HgSCCO”, Handbook of Superconducting Materials, Cardwell, D.A., and Ginsley, D.S., eds., IoP, Bristol 2003, p. 1029.Google Scholar
  21. 21.
    Welp, U., Grimsditch, M., You, H., Kwok, W.K., Fang, M.M., Crabtree, G.W., and Liu, J.Z., Physica C, 161, 1–5, 1989.ADSCrossRefGoogle Scholar
  22. 22.
    Freyhardt, H.C., and Winzer, K., Universität Göttingen, 1987, unpublished.Google Scholar
  23. 23.
    Freyhardt, H.C., and Gelsdorf, F., Universtiät Göttingen, 1987, unpublished.Google Scholar
  24. 24.
    Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M.E., van Dover, R.B., Kammlott, G.W., Fastnacht, R.A., and Keith, H.D., Appl. Phys. Lett., 52, 2074, 1988.ADSCrossRefGoogle Scholar
  25. 25.
    Salama, K., Selvamanickam V., Gao, L., and Sum, K., Appl. Phys. Lett., 54, 2352, 1989.ADSCrossRefGoogle Scholar
  26. 26.
    Schneemeyer, L.F., Gregory, E.M., and Waszczak, J.V., Phys. Rev. B, 36, 8804, 1987.ADSCrossRefGoogle Scholar
  27. 27.
    Erb, A., Walker, E., and Flükiger, R., Physica C, 258, 9, 1996.ADSCrossRefGoogle Scholar
  28. 28.
    Blatter, G., Feigelman, M.V., Geshkenbein, V.B., Larkin, A.I., and Vinokur, V.M., Rev. Mod. Phys., 66, 1125, 1994.ADSCrossRefGoogle Scholar
  29. 29.
    Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B, 41, 4038, 1990.ADSCrossRefGoogle Scholar
  30. 30.
    Rao, S.M., Loo, B.H., Wang, N.P., and Kelly, R.J., J. Cryst. Growth, 110, 989, 1991.CrossRefADSGoogle Scholar
  31. 31.
    Ota, K., and Ito, T., Physica C, 227, 77, 1994.ADSCrossRefGoogle Scholar
  32. 32.
    Murakami, M., ed., Melt Processed High-Temperature Superconductors, World Scientific, 1992. Murakami, M., Supercond. Sci. Technol., 5, 185, 1992.Google Scholar
  33. 33.
    Leenders, A., Walter, H., and Freyhardt, H.C., personal communication, German DYNASTORe project, 2004.Google Scholar
  34. 34.
    Tomita M., and Murakami, M, Nature, 421, 517, 2003.ADSCrossRefGoogle Scholar
  35. 35.
    Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hattfield, E., and Sikka, V.K., Appl. Phys. Lett., 69, 1795, 1996.ADSCrossRefGoogle Scholar
  36. 36.
    Goyal, A., “RABiTS: Status and Issues”, HTS Wire Development Workshop, St Petersburg, USA, January 2003. DOE Peer Review on Superconductivity for Electric Systems, Washington, August 2005.Google Scholar
  37. 37.
    Sarma, V.S., Eickemeyer, J., Singh, A., Schultz, L., and Holzapfel, B., Acta Mater., 51, 4919, 2003.CrossRefGoogle Scholar
  38. 38.
    Hänisch, J., Sarma, V.S., Zeimetz, B., Schindler, F., Eickemeyer, J., Schultz, L., and Holzapfel, B., Supercond. Sci. Technol., 17, 1003, 2004.ADSCrossRefGoogle Scholar
  39. 39.
    Hammerl, G., Herrnberger, A., Schmehl, A., Weber, A., Wiedemann, K., Schneider, C.W., and Mannhart, J., Appl. Phys. Lett., 81, 3209, 2002. Also Holzapfel, B. et al., “Improving the Critical Current Density of Coated Conductors in the Presence of Magnetic Fields”, EUCAS 2005, Vienna, September 12, 2005.ADSCrossRefGoogle Scholar
  40. 40.
    Freyhardt, H.C., Hoffmann, J., Wiesmann, J., Dzick, J., Heinemann, K., Issaev, A., Usoskin, A., and Garcia-Moreno, F., Applied Superconductivity, 4, 435, 1998.CrossRefGoogle Scholar
  41. 41.
    Usoskin, U., Freyhardt, H.C., and Issaev, A., “YBCO Coated Conductors Manufactured via High-Rate Pulsed Laser Deposition”, Frontiers in Superconducting Materials—New Materials and Application Symposium, December 1–4, 2003, Boston, p. 5.Google Scholar
  42. 42.
    Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Physica C, 185, 1961, 1991. Iijima, Y., Onabe, K, Futaki, N., Tanabe, N., Sadaka, N, Kohno, O, and Ikeno, Y, J. Appl. Phys., 74, 1905, 1993.ADSCrossRefGoogle Scholar
  43. 43.
    Iijima, Y., Kakimoto, K., Sutoh, Y., Ajimura, S., and Saitoh, T., Supercond. Sci. Technol., 17, S264, 2004.ADSCrossRefGoogle Scholar
  44. 44.
    Usoskin, A., Rutt, A., Knoke, J., and Krauth, H., “Long-Length YBCO Coated Stainless Steel Tapes with High Critical Currents”, Proc. CEC—ICMC, Keystone, Colorado, September 2005.Google Scholar
  45. 45.
    Issaev, A., Usoskin, A., Knoke, J., and Freyhardt, H.C., “Superconducting Properties of Long Coated Tapes. Optimization of Buffer/Shunt Layer Architecture”, Proc. International Workshop on Coated Conductors for Applications CCA2003, Orta S. Giulio, September 2003.Google Scholar
  46. 46.
    Muroga, T., Watanabe, T., Miyata, S., Iwai, H., Yamada, Y., and Shiohara, Y., “Enhancement of Grain Alignment and Deposition Rate of CeO2 Cap Layer on IBAD Tape for YBCO Coated Conductor”, Proc. International Workshop on Coated Conductors for Applications CCA2003, Orta S. Giulio, September 2003Google Scholar
  47. 47.
    Arendt, P., and Foltyn, S., “Development of Coated Conductors Based on IBAD-MgO”, Superconductivity for Electric Systems Annual Peer Review, Washington, July 2004Google Scholar
  48. 48.
    Evetts, J.E., Kursumovic, A., Tomov, R.I., Rutter, N.R., Driscoll, J.L., Glowacki, B.A., Sandiumenge, F., Cavallaro, A., Pomar, A., Puig, T, Obradors, X., Hühne, R., Holzapfel, B., Qi, X., and Lockmann, Z., “Development of ‘Robust’ Buffer Layer Architecture for Non-Vacuum Coated Conductor Processing”, Proc. International Workshop on Coated Conductors for Applications CCA2003, Orta S. Giulio, September 2003.Google Scholar
  49. 49.
    Clem, P.G., Voigt, J.A., Siegal, M.P., Venturini, E.L., Rupich, M., Kodenkandath, T., Li, X., Schoop, U., Paranthaman, M., List, F.A., Holesinger, T.A., Gibbson, and B., Matias, V., “Solution Deposition for YBCO Coated Conductors”, Superconductivity for Electric Systems Annual Peer Review, Washington, July 2004.Google Scholar
  50. 50.
    Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Pinol, S., Mestres, N., Castano, O., Coll, M., Cavallaro, A., Palau, A., Gasquez, J., Gonzalez, J.C., Guiterrez, J., Roma, N., Ricart, S., Moreto, J.M., Rossel, M.D., and van Tendeloo, G., Supercond. Sci. Technol., 17, 1055, 2004.ADSCrossRefGoogle Scholar
  51. 51.
    Freyhardt, H.C., Wördenweber, R., Utz, B., Usoskin, A., and Yamada, Y., “Physical Vapour Thin Film Deposition Techniques”, Handbook of Superconducting Materials, Cardwell, D.A., and Ginsley, D.S., eds., IoP, Bristol 2003, p. 741.Google Scholar
  52. 52.
    Usoskin, A., Rutt, A., Knoke, J., and Dietrich, R., Proc. CEC—ICMC Conf., Keystone, Colorado, USA, August 2005.Google Scholar
  53. 53.
    Arendt, P., Los Alamos Nat. Lab., personal communication, September 2005; with additions of H.C. Freyhardt.Google Scholar
  54. 54.
    Yamada, Y., Ibi, A., Fukushima, H., Kuriki, R., Takahashi, K., Kobayshi, H., Konishi, M., Miyata, S., Shiohara, Y., Kato, T., and Hirayama, T., Proc. CEC—ICMC Conf., Keystone, Colorado, USA, August 28–September 1, 2005.Google Scholar
  55. 55.
    Prusseit, W., Methods of HTS Deposition: Thermal Evaporation, Theva Dünnschicht GmbH, 2000. Prusseit, W., Sigl, G., Nemetschek, R., Hoffmann, C., Handke, J., Lümkemann, A., and Kinder, H., IEEE Trans. Appl. Superconductivity, 15, 2608, 2005.CrossRefGoogle Scholar
  56. 56.
    Yamada, Y., and Shiohara, Y., Physica C, 217, 182, 1993.ADSCrossRefGoogle Scholar
  57. 57.
    Kursumovic, A., Tomov, R.I., Hühne, R., MacManus-Discoll, J.L., Glowacki, B.A., and Evetts, J.E., Supercond. Sci. Technol., 17, 1215, 2004.ADSCrossRefGoogle Scholar
  58. 58.
    Malozemoff, A.P., Second-Generation HTS Wire: An Assessment, American Superconductor Corporation, March 2004.Google Scholar
  59. 59.
    Kovalsky, L., Xing Yuan, Tekletsadik, K., Keri, A., Bock, J., and Breuer, F., IEEE Trans. Appl. Supercond., 15, 2130–2133, 2005.CrossRefGoogle Scholar
  60. 60.
    Kalsi, S.S., Madura, D., and Ingram, M., IEEE Trans. Appl. Supercond., 15, 2146–2149, 2005.CrossRefGoogle Scholar
  61. 61.
    Snitchler, G., Gamble, B., and Kalsi, S.S., IEEE Trans. Appl. Supercond., 15, 2206–2209, 2005.CrossRefGoogle Scholar
  62. 62.
    European Advanced Superconductors, http://www.advancedsupercon.com/pdf/ press_release_EAS_HTS_generator.pdf, 2006.Google Scholar
  63. 63.
    SuperPower, I., http://www.igc.com/superpower/products/hts_components/12_5kv .htm#acp, 2006.Google Scholar
  64. 64.
    Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., and Sumption, M., Nature, 430, 867–870, 2004.ADSCrossRefGoogle Scholar
  65. 65.
    Dou, S.X., Wang, X.L., Guo, Y.C., Hu, Q.Y., Mikheenko, P., Horvat, J., Ionescu, M., and Liu, H.K., Supercond. Sci. Technol., 10, 52–67, 1997.ADSCrossRefGoogle Scholar
  66. 66.
    Heine, K., Tenbrink, J. and Thoner, M., Appl. Phys. Lett., 55, 2441–2443, 1989.ADSCrossRefGoogle Scholar
  67. 67.
    Alexandrov, A.S., Zavaritsky, V.N., Liang, W.Y., and Nevsky, P.L., Phys. Rev. Lett., 76, 983–986, 1996.ADSCrossRefGoogle Scholar
  68. 68.
    Babic, E., Kusevic, I., Zadro, K., Ivkov, J., Marohnic, Z., Drobac, D., Prester, M., Hua Kun Liu, Shi Xue Dou, Todorovic-Marinic, D., and Kursumovic, A., Fizika A, 4, 549–560, 1995.ADSGoogle Scholar
  69. 69.
    Maeda, H., Asano, T., Kumakura, H., Sekine, H., Yanagisawa, E., Numata, K., Togano, K., and Tanaka, Y., High Temperature Superconducting Compounds: Processing and Related Properties. Proceedings of the 1989 Symposium, 1989, pp. 439–449.Google Scholar
  70. 70.
    Kobayashi, S., Kato, T., Yamazaki, K., Ohkura, K., Fujino, K., Fujikami, J., Ueno, E., Ayai, N., Kikuchi, M., Hayashi, K., Sato, K., and Hata, R., IEEE Trans. Appl. Supercond., 15, 2534–2537, 2005.CrossRefGoogle Scholar
  71. 71.
    Bulaevskii, L.N., Daemen, L.L., Maley, M.P., and Coulter, J.Y., Phys. Rev. B, 48, 13,798–13,816, 1993.CrossRefGoogle Scholar
  72. 72.
    Hensel, B., Grasso, G., and Flukiger, R., Physical Review B, 51, 15,456–15,473, 1995.CrossRefGoogle Scholar
  73. 73.
    Riley, G.N., Jr., Malozemoff, A.P., Li, Q., Fleshler, S., and Holesinger, T.G., J. Met., 49, 24–27, 1997.Google Scholar
  74. 74.
    Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl Phys., 27, 209–210, 1988.ADSCrossRefGoogle Scholar
  75. 75.
    Liu, H.K., Dou, S.X., Savvides, N., Zhou, J.P., Tan, T.X., Bourdillon, A.J., Kviz, M., and Sorrell, C.C., Physica C, 157, 93–98, 1989.ADSCrossRefGoogle Scholar
  76. 76.
    Kang-Ho Song, Hua-Kun Liu, Shi-Xue Dou, and Sorrell, C.C., J. Amer. Ceram. Soc., 73, 1771–1773, 1990.CrossRefGoogle Scholar
  77. 77.
    Ward, T.L., Lyons, S.W., Kodas, T., Brynestad, J., Kroeger, D.M., and Hsu, H., Physica C, 200, 31, 1992.ADSCrossRefGoogle Scholar
  78. 78.
    Hatano, T., Aota, K., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys., 27, L2055–L2058, 1988.ADSCrossRefGoogle Scholar
  79. 79.
    Sastry, P.V.P.S.S., and West, A.R., Physica C, 250, 87–92, 1995.ADSCrossRefGoogle Scholar
  80. 80.
    Luo, J.S., Dorris, S.E., Fischer, A.K., LeBoy, J.S., Maroni, V.A., Feng, Y., and Larbalestier, D.C., Supercond. Sci. Technol., 9, 412–421, 1996.ADSCrossRefGoogle Scholar
  81. 81.
    Jeremie, A., Alami-Yadri, K., Grivel, J., and Flukiger, R., Supercond. Sci. Technol., 6, 730–735, 1993.ADSCrossRefGoogle Scholar
  82. 82.
    Luo, J.S., Merchant, N., Escorcia-Aparicio, E.J., Maroni, V.A., Tani, B.S., Carter, W.L., and Riley, G.N., Jr., J. Mater. Res., 9, 3059–3067, 1994.ADSCrossRefGoogle Scholar
  83. 83.
    MacManus-Driscoll, J.L., Bravman, J.C., Savoy, R.J., Gorman, G., and Beyers, R.B., J. Amer. Ceram. Soc., 77, 2305–2313, 1994.CrossRefGoogle Scholar
  84. 84.
    Dou, S.X., Song, K., Liu, H.K., Sorrell, C.C., Apperley, M.H., and Savvides, N., Appl. Phys. Lett., 56, 493–494, 1990.ADSCrossRefGoogle Scholar
  85. 85.
    High, Y.E., Feng, Y., Sung, Y.S., Hellstrom, E.E., and Larbalestier, D.C., Physica C, 220, 81–92, 1994.ADSCrossRefGoogle Scholar
  86. 86.
    Navarro, R., Supercond. Sci. Technol., 13, 147–170, 2000.ADSCrossRefGoogle Scholar
  87. 87.
    Fujishiro, H., Ikebe, R., Noto, I., Matsukawa, M., Sasaoka, T., Nomura, K., Sato, J., and Kuma, S., IEEE Trans. Magn., 30, 1645–1650, 1994.ADSCrossRefGoogle Scholar
  88. 88.
    Sasaoka, T., Sato, J., Fukushima, K., Okada, M., Endo, M., Yaegashi, Y., and Nagano, M., Cryogenics, 37, 409–415, 1997.CrossRefGoogle Scholar
  89. 89.
    Majewski, P., Aubele, A., Fahr, T., and Aldinger, F., Physica C, 351, 62–66, 2001.ADSCrossRefGoogle Scholar
  90. 90.
    Wesolowski, D.E., Rikel, M.O., Jiang, J., Arsac, S., and Hellstrom, E.E., Superconductor Science and Technology, 18, 934–943, 2005.ADSCrossRefGoogle Scholar
  91. 91.
    Endo, U., Koyama, S., and Kawai, T., Jpn. J. Appl. Phys., 27, 1476–1479, 1988.ADSCrossRefGoogle Scholar
  92. 92.
    Baurceanu, R.M., Maroni, V.A., Merchant, N.M., Fischer, A.K., McNallan, M.J., and Parrella, R.D., Supercond. Sci. Technol., 15, 1167–1175, 2002.ADSCrossRefGoogle Scholar
  93. 93.
    Aota, K., Hattori, H., Hatano, T., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys., 28, L2196–L2199, 1989.ADSCrossRefGoogle Scholar
  94. 94.
    Holesinger, T.G., Ayala, A., Baurceanu, R.M., and Maroni, V.A., IEEE Trans. Appl. Supercond., 11, 2991–2994, 2001.CrossRefGoogle Scholar
  95. 95.
    Luo, J.S., Merchant, N., Escorcia-Aparicio, E., Maroni, V.A., Gruen, D.M., Tani, B.S., Riley, G.N., Jr., and Carter, W.L., IEEE Trans. Appl. Supercond., 3, 972–975, 1993.CrossRefGoogle Scholar
  96. 96.
    Hatano, T., Aota, K., Hattori, H., Ikeda, S., Nakamura, K., and Ogawa, K., Cryogenics, 30, 611–613, 1990.ADSCrossRefGoogle Scholar
  97. 97.
    Matsumoto, A., Kitaguchi, H., Kumakura, H., Nishioka, J., and Hasegawa, T., Supercond. Sci. Technol., 17, 989–992, 2004.ADSCrossRefGoogle Scholar
  98. 98.
    Yamada, Y., Graf, T., Seibt, E., and Flukiger, R., IEEE Trans. Magn., 27, 1495–1498, 1991.CrossRefADSGoogle Scholar
  99. 99.
    Yamada, Y., Obst, B., and Flukiger, R., Supercond. Sci. Technol., 4, 165–171, 1991.ADSCrossRefGoogle Scholar
  100. 100.
    Jiang, J., Cai, X.Y., Polyanskii, A.A., Schwartzkopf, L.A., Larbalestier, D.C., Parrella, R.D., Li, Q., Rupich, M.W., and Riley, G.N., Jr., Supercond. Sci. Technol., 14, 548–556, 2001.ADSCrossRefGoogle Scholar
  101. 101.
    Johnson, D.W., Jr., and Rhodes, W.W., J. Amer. Ceram. Soc., 72, 2346–24350, 1989.CrossRefGoogle Scholar
  102. 102.
    Parrell, J.A., Polyanskii, A.A., Pashitski, A.E., and Larbalestier, D.C., Supercond. Sci. Technol., 9, 393–398, 1996.ADSCrossRefGoogle Scholar
  103. 103.
    Holesinger, T.G., Bingert, J.F., Parrella, R.D., and Riley, G.N., Jr., AIP Conf. Proc. B, 614, 724–731, 2002.ADSCrossRefGoogle Scholar
  104. 104.
    Thurston, T.R., Wildgruber, U., Jisrawi, N., Haldar, P., Suenaga, M., and Wang, Y.L., J. Appl. Phys., 79, 3122–3132, 1996.ADSCrossRefGoogle Scholar
  105. 105.
    Larbalestier, D.C., Babcock, S.E., Cai, X.Y., Dorris, S.E., Edelman, H.S., Gurevich, A., Parrell, J.A., Pashitski, A., Polyanskii, A., I-Fei Tsu, and Wang J.-L., Applied Superconductivity 1995. Proceedings of EUCAS 1995, Second European Conference on Applied Superconductivity, Vol. 1, 1995, pp. 29–34.Google Scholar
  106. 106.
    Giannini, E., Bellingeri, E., Passerini, R., and Flukiger, R., Physica C, 315, 185–197, 1999.ADSCrossRefGoogle Scholar
  107. 107.
    Jiang, J., Cai, X.Y., Chandler, J.G., Patnaik, S., Polyanskii, A.A., Yuan, Y., Hellstrom, E.E., and Larbalestier, D.C., IEEE Trans. Appl. Supercond., 13, 3018–3021, 2003.CrossRefGoogle Scholar
  108. 108.
    Yuan, Y., Cai, X.Y., Jiang, J., Huang, Y., Larbalestier, D.C., and Hellstrom, E.E., IEEE Trans. Appl. Supercond., 15, 2530–2533, 2005.CrossRefGoogle Scholar
  109. 109.
    Jiang, J., University of Wisconsin—Madison, unpublished, 2005.Google Scholar
  110. 110.
    Nakao-Kametani, F., and Osamura, K., Supercond. Sci. Technol., 18, 290–296, 2005.CrossRefADSGoogle Scholar
  111. 111.
    Rikel, M.O., Williams, R.K., Cai, X.Y., Polyanskii, A.A., Jiang, J., Wesolowski, D., Hellstrom, E.E., Larbalestier, D.C., DeMoranville, K., Riley, G.N., Jr., IEEE Trans. Appl. Supercond., 11, 3026, 2001.CrossRefGoogle Scholar
  112. 112.
    Yuan, Y., Jiang, J., Cai, X.Y., Larbalestier, D.C., Hellstrom, E.E., Huang, Y., and Parrella, R., Appl. Phys. Lett., 84, 2127–2129, 2004.ADSCrossRefGoogle Scholar
  113. 113.
    Hellstrom, E.E., Yuan, Y., Jiang, J., Cai, X.Y., Larbalestier, D.C., and Huang, Y., Supercond. Sci. Technol., 18, S325–S331, 2005.ADSCrossRefGoogle Scholar
  114. 114.
    Yuan, Y., Williams, R.K., Jiang, J., Larbalestier, D.C., Cai, X.Y., Rikel, M.O., DeMoranville, K.L., Huang, Y., Li, Q., Thompson, E., Riley, G.N., Jr., Hellstrom, E.E., Physica C, 372–376, 883–886, 2002.CrossRefGoogle Scholar
  115. 115.
    Patnaik, S., Feldmann, D.M., Polyanskii, A.A., Yuan, Y., Jiang, J., Cai, X.Y., Hellstrom, E.E., Larbalestier, D.C., and Huang, Y., IEEE Trans. Appl. Supercond., 13, 2930–2933, 2003.CrossRefGoogle Scholar
  116. 116.
    Yuan, Y., Ph.D. thesis, University of Wisconsin—Madison, 2004.Google Scholar
  117. 117.
    Umezawa, A.; Feng, Y.; Edelman, H.S.; High, Y.E.; Larbalestier, D.C.; Sung, Y.S.; Hellstrom, E.E.; and Fleshler, S., Physica C, 198, 261, 1992.ADSCrossRefGoogle Scholar
  118. 118.
    Liao, S.-Y., Ph.D. thesis, University of Wisconsin—Madison, 2004.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • H.C. Freyhardt
    • 1
  • E.E. Hellstrom
    • 2
  1. 1.Institut für MaterialphysikUniversität GöttingenGöttingenGermany
  2. 2.Applied Superconductivity CenterUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations